Structures I University of Michigan, Taubman College Slide 1 of 22 # Definitions and Assumtions of Truss Systems 2 Force Members **Pinned Joints** **Concurrent Member Centroids at Joints** Joint Loaded **Straight Members** **Small Deflections** Bullring Covering, Xàtiva, Spain Kawaguchi and Engineers, 2007 #### Qualitative T or C For typical gravity loading: (tension=red compression=blue) Top chords are in compression Bottom chords are in tension Diagonals down toward center are in tension (usually) Diagonals up toward center are in compression (usually) Structures I University of Michigan, Taubman College Slide 3 of 22 #### **Qualitative Force** For spanning trusses with uniform loading: (tension=blue compression=red) Top and bottom chords greatest at center when flat (at maximum curvature or moment) Diagonals greatest at ends (near reactions, i.e. greatest shear) # Truss Analysis Method of Joints Method of Sections - #### Graphic Methods James Clerk Maxwell 1869 M. Williot 1877 Otto Mohr 1887 Heinrich Müller-Breslau 1904 William Baker, SOM James Clerk Maxwell #### **Computer Programs** Dr. Frame (2D) STAAD Pro (2D or 3D) West Point Bridge Designer Structures I University of Michigan, Taubman College # Method of Joints - procedure ## Method of Sections - procedure Structures I University of Michigan, Taubman College # Method of Sections - procedure - 1. Solve Reactions - 2. Cut section through truss - 3. Choose point where all but one of the unknown forces cross and ΣM - 4. Continue with ΣF_H and ΣF_V Slide 7 of 22 Structures I University of Michigan, Taubman College Slide 8 of 22 1. Solve the external reactions for the whole truss. Sum moments about each end. Or using symmetry, divide vertical forces evenly between reactions REACTIONS: $$\Sigma M_{RJ} = 0$$ = $50^{\kappa}(12') + 50^{\kappa}(24') + 50^{\kappa}(36') - R_2(48')$ $R_2(48') = 3600^{\kappa-1}$ $R_2 = 75^{\kappa}$ $$\Sigma M_{RZ} = 0$$ = $R_1(48') - 50^{\kappa}(36') - 50^{\kappa}(24') - 50^{\kappa}(12')$ $R_1(48') = 3600^{\kappa-1}$ $R_1 = 75^{\kappa}$ Structures I University of Michigan, Taubman College Slide 9 of 22 # Method of Sections - example × !- 2. Solution proceeds by cutting FBDs of either joints or sections of the truss. Member forces are shown as horizontal and vertical force components at each cut section. $$\sum_{A_{i}=75}^{10} A_{i} = 75^{-1} A_{i}$$ $$A_{i} = 37.5^{-1} A_{i}$$ $$\frac{\sum F_H = 0 = -37.5^k + J_H}{J_H = 37.5^k \rightarrow T}$$ 2. Solution proceeds by cutting FBDs of either joints or sections of the truss. Member forces are shown as horizontal and vertical force components at each cut section. 3. Choose a point where all but one of the forces cross and sum moments. $$\Sigma M_{X} = O = \frac{75^{K}(12')}{B_{H}} (B_{H}) (A')$$ $$B_{H} = 64.28^{K}$$ $$\frac{3}{4} : \frac{B_{V}}{64.28}$$ $$B_{V} = 48.21^{K}$$ $$B = 80.35^{K} C$$ Structures I University of Michigan, Taubman College Slide 11 of 22 # Method of Sections - example 4. Continue with ΣF_H and ΣF_V Member forces are shown as horizontal and vertical force components at each cut section. $$\Sigma F_{H} = 0 = +37.5 - 64.28 + K_{H}$$ $$K_{H} = \frac{26.76^{K}}{26.76^{K}} \downarrow$$ $$K = 37.87^{K} T$$ 4. Continue with ΣF_{H} and ΣF_{V} Member forces are shown as horizontal and vertical force components at each cut section. $$\Sigma F_{v} = 0 = 26.78^{k} - 50^{k} + L$$ $L = 23.22^{k} T$ Structures I University of Michigan, Taubman College Slide 13 of 22 # Method of Sections - example 2. Solution proceeds by cutting FBDs of either joints or sections of the truss. Member forces are shown as horizontal and vertical force components at each cut section. 3. Choose a point where all but one of the forces cross and sum moments. $$\sum M_{x} = 0$$ $$= 75^{k}(24') - 50^{k}(12') - C_{H}(18')$$ $$C_{H}(18) = 1200$$ $$C_{H} = 44.67^{k} \leftarrow$$ $$C_{V} = 22.22^{k} \downarrow$$ $$C = 70,27^{k}C$$ Structures I University of Michigan, Taubman College Slide 15 of 22 # Method of Sections - example 5. Make final qualitative check of solution. ## Tips on Sections #### **Howe Truss** - 1. Cut a panel with diagonals - 2. ΣM at L₂ and resolve upper chord force at U₂. This gives U₁U₂H - 3. ΣM at U₁ to find L₁L₂ - 4. ΣM at U_2 and resolve U_1L_2 at L_2 to find U_1L_2H - 5. ΣM at L_0 and resolve U_1L_2 at L_2 to find U_1L_2V - 6. U_1U_2V can now be found by ΣF_V Structures I University of Michigan, Taubman College Slide 17 of 22 ## Tips on Sections #### Parker Truss - 1. Cut a panel with diagonals and Σ M at L₂ to solve U₁U₂H as before. - 2. ΣM at U_1 to find L_1L_2 - 3. ΣM at U_2 and resolve U_1L_2 at L_2 to find U_1L_2H - 4. Find point x in line with U_1U_2 . ΣM at x and resolve U_1L_2 at L_2 to find U_1L_2V - 5. U_1U_2V can now be found by ΣF_V # Tips on Sections #### K Truss - Make cut A-A to avoid the mid panel joint - 2. ΣM at U_1 to get L_1L_2 - 3. ΣM at L₁ to get U₁U₂ - 4. The vertical web forces can be solved using joints - 5. Cut B-B through the diagonals - ΣM at U₂ and resolve lower diagonal at L₂ to find its H component. The V component can be found by slope triangle. Top and bottom chords are known from steps 2. & 3. - 7. Repeat step 6 by ΣM at L₂ to find other diagonal. Structures I University of Michigan, Taubman College Slide 19 of 22 ## **Examples of Trusses** **Timber Frame** Hamburg Airport - steel tube truss Light Frame – dimensioned lumber Concrete Truss - Kilburn Rd. Bridge, Calif. Structures I University of Michigan, Taubman College Slide 20 of 22 #### **Trussed Lateral Bracing** #### **Diagrid Towers** John Handcock Tower - 1968 875 North Michigan Avenue, Chicago Fazlur Kahn, SOM - (a) Hearst Tower in NY - (c) Capital Gate tower in Abu Dhabi - (b) Poly International Plaza tower in Chaoyang Qu - (d) 30 St. Mary Axe in London Structures I University of Michigan, Taubman College Slide 21 of 22 #### Optimized Principal Stress Grid Figure 1. (a) Original Michell's minimum frame [9], (b) structural design by Zalewski and Zabłocki [105], and (c) CITIC financial centre in Shenzhen by SOM [105]. William Baker Structures I