

Load Combinations – ASCE-7

Load Types

- Dead Load D
- Roof Live Load Lr
- Floor Live Load L
- Snow Load S
- Wind Load W
- Earthquake E

Load Combinations

Allowable Stress Design (ASD)

- ۰D
- D+L
- D + (Lr or S)
- D + 0.75 L + 0.75 (Lr or S)
- D + (W or 0.7 E)

Load & Resistance Factored Design (LRFD)

- 1.4 D
- 1.2 D + 1.6 Lr + 0.5(Lr or S)
- 1.2 D + 1.6(Lr or S) + (L or 0.8W)
- 1.2 D + 1.6W + L + 0.5(Lr or S)
- 1.2 D + 1.6E + L + 0.2S

Load Paths

Floor Loads

Dead Load

weight of structure

Live Load

occupancy load

Member Hierarchy

Flooring spans between joists Joists span between beams Beams span between girders Girders span between columns Columns carry load to ground

University of Michigan, TCAUP

Load Paths

Floor Slabs

Concrete slabs span in the direction of the steel reinforcement.

One-way slabs should span the shortest direction.

Two-way slabs span in both directions. Aspect ratios should be square or less than 2:1. The load path divides at 45° from corner.

two-way slab tributary area of beam B

two-way waffle slab

Structures I

Slide 5 of 20

Tributary Area

The **tributary area** is an area used to determine the load on a member.

If geometry and loading is symmetric, then load paths and reactions are also symmetric.

Load Transfer example 1

Floor System

example 2

Find Load Diagrams for: B1 B2 G1

Dead Load wall 800 PLF floor slab 70 PSF

Live Load floor 90 PSF

Notice the order: B1, then B2, then G1

Concrete slab floor system spanning in directions shown

Locate W at the centroid of the distributed loading.

Solve the end reactions by summing moments about reactions or by proportions.

$$w x L = W$$

Floor:

800 PLF x 20 FT = 16000 LBS

Wall:

800 PLF x 20 FT = 16000 LBS

Load diagram

Floor System example 2 cont.

From the PLF loading, calculate a total W load.

Locate W at the centroid of the distributed loading.

Solve the end reactions by summing moments or by proportions.

Reaction from B1: R = 16000 LBS

Wall:

800 PLF x 10 FT = 8000 LBS

Floor:

1600 PLF x 20 FT / 2 = 16000 LBS

Load diagram

Floor System example 2 cont.

From the PLF loading, calculate a total W load.

Locate W at the centroid of the distributed loading.

Solve the end reactions by summing moments or by proportions.

reaction from B2: 18000 LBS

Floor on G1:

800 PLF x 20 FT = 16000 LBS 800 PLF x 40 FT = 32000 LBS

2-way Slab:

1600 PLF x 10 FT = 16000 LBS

