Stress and Strain

- Stress
- Strain
- Analysis ASD vs. LRFD
- Modes of Failure

University of Michigan, TCAUP Structures I Slide 1 of 14

Stress

Stress is the result of a force being applied to the area of a material.

$$\sigma = \frac{P}{A}$$

Shear Stress

COMPRESSION

Strain

Strain is the amount of deformation in the material, per unit length.

$$\varepsilon = \frac{D}{L}$$

Deformation occurs either in stretching (tension) or in compressing (compression) but not always at the same rate.

COMPRESSION

University of Michigan, TCAUP

Structures I

Slide 3 of 14

Types of Stress

- Compression

• Tension

• Flexure

M c

Shear

T r

Torsion

Stress Analysis

Allowable Stress Design (ASD)

- use applied loads (no F.S. on loads)
- · reduce stress by a Factor of Safety F.S.

$$f_{actual} \le F_{allowable}$$

$$f_{actual} = \frac{P}{A}$$

$$F_{allowable} = F.S. \cdot f_{yield}$$

Load & Resistance Factored Design (LRFD)

- Use loads with safety factor γ
- Use factor on nominal strength φ

$$P_{load} \le P_{resisting}$$

$$P_{load} = \gamma \cdot P_{applied}$$

$$P_{resisting} = \phi \cdot P_{material}$$

University of Michigan, TCAUP

Structures I

Slide 5 of 14

Stress Calculations - example

Find the stress in each material:

- wood
- steel
- · concrete
- soil

Axial Compression

The stress equals the force spread over an area.

$$\sigma = \frac{P}{A}$$

Find the force on the members

FBD to find the end reactions

University of Michigan, TCAUP

Structures I

Slide 7 of 14

Stress Calculations

for the right side (wood)

The stress equals the force on the member, spread over the sectional area of the member.

$$\sigma = \frac{P}{A}$$

Stress in Wood:

f = P/A

 $f = 8000 lbs/12.25 in^2$

f = 653 psi

F = 800 psi

f < F ok

for the left side (steel pipe)

The stress equals the force spread over the area.

$$\sigma = \frac{P}{A}$$

University of Michigan, TCAUP

Structures I

Slide 9 of 14

Slide 10 of 14

Stress Calculations

for the left side (foundation)

The stress equals the force spread over an area.

$$\sigma = \frac{P}{A}$$

Axial Tension

The stress equals the force spread over an area.

open spiral rope half-locked rope

Santiago Calatrava - Serreria Bridge - Valencia 2008

University of Michigan, TCAUP Structures I Slide 11 of 14

Stress Calculations

Shear

The stress equals the force spread over an area.

$$\sigma = \frac{P}{A}$$

Bending

Flexure Stress

The stress is on the "fibers" or longitudinal layers

$$\sigma = \frac{M c}{I}$$

Shear Stress

The stress is between the longitudinal layers.

$$\tau = \frac{\text{VQ}}{\text{Ib}}$$

University of Michigan, TCAUP Structures I Slide 13 of 14

Modes of Failure

Strength

- Tension rupture
- · Compression crushing

Stability

- Column buckling
- Beam lateral torsional buckling

Serviceability

- Beam deflection
- Building story drift
- cracking

