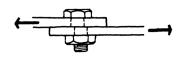

Stress and Strain

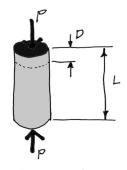
- Stress
- Strain
- Analysis ASD vs. LRFD
- Modes of Failure



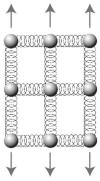
University of Michigan, TCAUP Structures I Slide 1 of 14

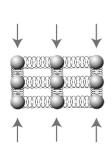
Stress

Stress is the result of a force being applied to the area of a material.

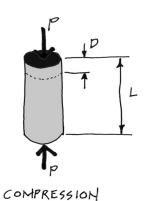

$$\sigma = \frac{P}{A}$$
 Force

Shear Stress


COMPRESSION


Strain

Strain is the amount of deformation in the material, per unit length.

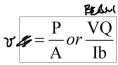

$$\varepsilon = \frac{D}{L}$$

Deformation occurs either in stretching (tension) or in compressing (compression) but not always at the same rate.

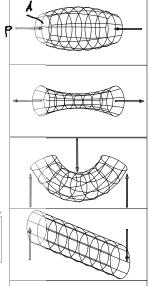
University of Michigan, TCAUP

Structures I

Slide 3 of 14


Types of Stress

- Compression
- Tension
- Flexure
- Shear
- Torsion


$$\sigma = \frac{P}{A}$$

$$\tau = \frac{T \ \underline{r}}{J}$$

Stress Analysis

OLDER

Allowable Stress Design (ASD)

- use applied loads (no F.S. on loads)
- reduce stress by a Factor of Safety F.S.

$$f_{actual} \le F_{allowable}$$

$$\underline{f_{actual}} = \frac{P}{A}$$

$$F_{\textit{allowable}} = \underline{F.S.}.f_{\textit{yield}}$$

Load & Resistance Factored Design (LRFD)

- Use loads with safety factor γ
- Use factor on nominal strength φ

$$|P_{load} \le P_{resisting}|$$

$$\uparrow P_{load} = \underbrace{\gamma \cdot P_{applied}}$$

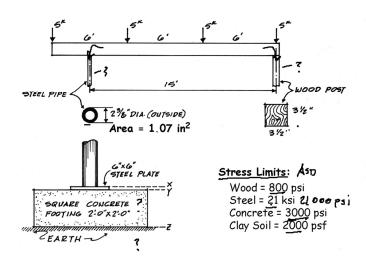
$$\downarrow P_{resisting} = \underline{\phi} \cdot P_{material}$$

University of Michigan, TCAUP

Structures I

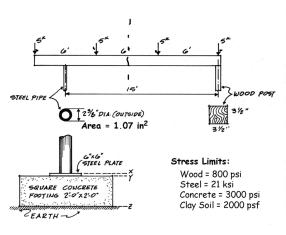
Slide 5 of 14

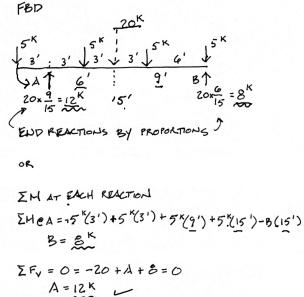
Stress Calculations - example


Find the stress in each material:

- wood
- steel
- · concrete
- soil

Axial Compression


The stress equals the force spread over an area.


$$\sigma = \frac{P}{A}$$

Find the force on the members

FBD to find the end reactions

University of Michigan, TCAUP Structures I Slide 7 of 14

Stress Calculations

for the right side (wood)

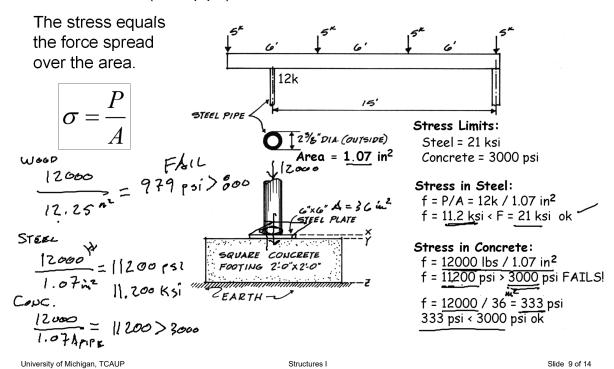
The stress equals the force on the member, spread over the sectional area of the member.

$$\sigma = \frac{P}{A} = \frac{8000}{12.25 \, \text{n}^2} = 653 \, \text{psi}$$
Area = 12.25 in²
Stress Limits:

Wood = 800 psi

Stress in Wood:

$$f = P/A$$


$$f = 8000 \text{lbs}/12.25 \text{ in}^2$$

$$f = 653 \, \text{psi}$$

$$F = 800 \, \text{psi}$$

$$f \in Folk$$

for the left side (steel pipe)

Stress Calculations

for the left side (foundation)

The stress equals the force spread over an area.

Axial Tension

The stress equals the force spread over an area.

open spiral rope half-locked rope

Santiago Calatrava - Serreria Bridge - Valencia 2008

University of Michigan, TCAUP Structures I Slide 11 of 14


Stress Calculations

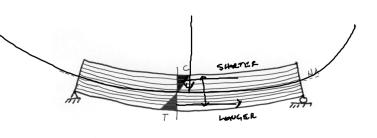
Shear

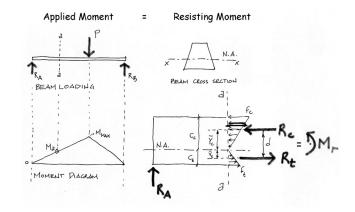
The stress equals the force spread over an area.

$$\sigma = \frac{P}{A}$$

Bending

Flexure Stress


The stress is on the "fibers" or longitudinal layers

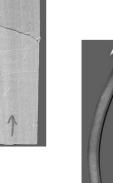


Shear Stress

The stress is between the longitudinal layers.

$$\underline{\tau} = \frac{\text{VQ}}{\text{Ib}}$$

University of Michigan, TCAUP Structures I Slide 13 of 14


Modes of Failure

Strength

- Tension rupture
- Compression crushing

Stability

- Column buckling
- Beam lateral torsional buckling

Serviceability

- Beam deflection
- Building story drift —
- cracking

