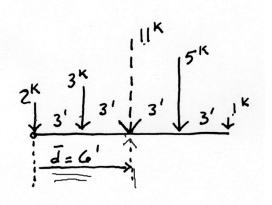

ARCHITECTURE 314 STRUCTURES I

Cross-Sectional Properties of Structural Members

Resultant of Parallel Forces
Center of Gravity
Centroid of Area
First Moment of Area
Second Moment of Area
(Moment of Inertia)
Radius of Gyration

University of Michigan, TCAUP Structures I Slide 1 of 21


Parallel Force Resultant

The resultant is the single force that has the same effect as the group of forces.

$$\sum M = \sum (\mathbf{F} \times d) = \mathbf{R} \times \overline{d}$$

$$\sum \mathbf{F} = \mathbf{R}$$

$$\underline{\overline{d}} = \frac{\sum (\mathbf{F} \times d)}{\sum \mathbf{F}}$$

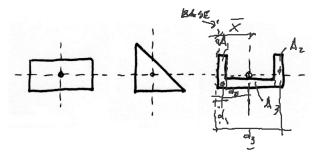
Centers

The point about which a body may be balanced.

This is the point of application of the resultant weight.

Center of Gravity

$$\bar{x} = \frac{\sum \mathbf{W} \times d_x}{\sum \mathbf{W}}$$


Center of Volume

$$\overline{x} = \frac{\sum \mathbf{V} \times d_x}{\sum \mathbf{V}}$$

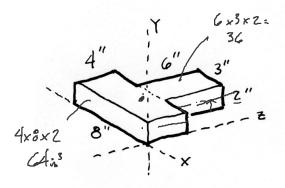
Center of Area (centroid)

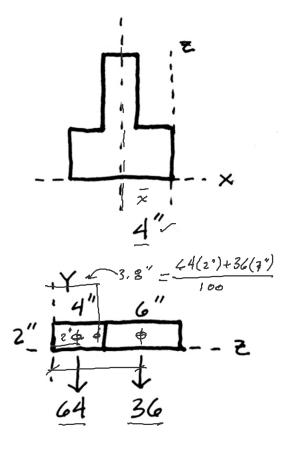
$$\underline{\underline{x}} = \frac{\sum \underline{\mathbf{A}} \times \underline{d_x}}{\sum \underline{\mathbf{A}}}$$

Tyrrell Photographic Collection, Powerhouse Museum

University of Michigan, TCAUP

Structures I


Slide 3 of 21


Center of Gravity (or Volume)

The Center of Gravity is located at the point defined by:

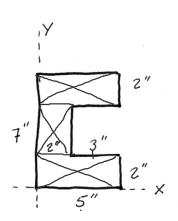
$$\frac{\left[(x, y, z)\right]}{\left(\mathcal{A}_{J} 3. \mathcal{E}_{J}^{-1}\right)}$$

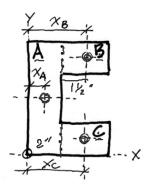
$$\overline{z} = \frac{\sum \mathbf{W} \times d_{z}}{\sum \mathbf{W}}$$

Center of Area - the Centroid

The "center of area" for a cross section.

$$\overline{x} = \frac{\sum (\mathbf{A} \operatorname{rea} \times d_x)}{\sum \mathbf{A} \operatorname{rea}} = \frac{\mathbf{A} x_A + \mathbf{B} x_B + \mathbf{C} x_c}{\mathbf{A} + \mathbf{B} + \mathbf{C}}$$


Area
$$_{A}$$
 = 2 x 7 = 14 $^{\prime}$
Area $_{B}$ = 3 x 2 = 6 $^{\prime}$


Area
$$_{\rm C}$$
 = 3 x 2 = 6 $^{\prime}$

$$x_A = 1$$

$$x_B = 3.5$$

$$x_{\rm C} = 3.5$$

University of Michigan, TCAUP

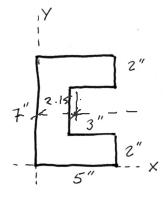
Structures I

Slide 5 of 21

Centroid Example 1 cont.

Area
$$_{A} = 2 \times 7 = 14$$
 $x_{A} = 1$
Area $_{B} = 3 \times 2 = 6$ $x_{B} = 3.5$

$$y_{.} = 1$$

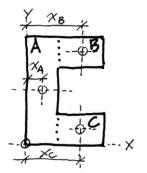

Area
$$_{\rm B}$$
 = 3 x 2 = 6

$$x_{\rm p} = 3.5$$

Area
$$_{C} = 3 \times 2 = 6$$
 $x_{C} = 3.5$

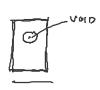
$$x_{c} = 3.5$$

$$sum = 26$$



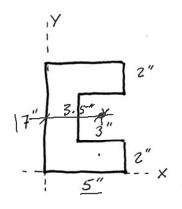
Calculation.

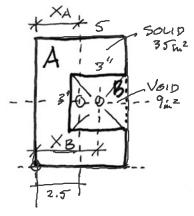
$$\overline{x} = \frac{\sum \mathbf{A} \operatorname{rea} \times d_x}{\sum \mathbf{A} \operatorname{rea}} = \frac{\mathbf{A} x_A + \mathbf{B} x_B + \mathbf{C} x_c}{\mathbf{A} + \mathbf{B} + \mathbf{C}}$$


$$\frac{-}{x} = \frac{(14 \times 1) + (6 \times 3.5) + (6 \times 3.5)}{14 + 6 + 6}$$

$$\bar{x} = \frac{56}{26} = 2.15$$
"

Centroid Example 1 cont.


Calculation: by Solid - Void.



$$\overline{x} = \frac{\sum \underline{\mathbf{A}} \times \underline{d}_x}{\sum \underline{\mathbf{A}}} = \frac{\mathbf{A} x_A - \mathbf{B} x_B}{\mathbf{A} - \mathbf{B}}$$

$$\overline{x} = \frac{\sum (35 \times 2.5) - (9 \times 3.5)}{\sum 35 - 9} = \frac{56}{26}$$

$$\overline{x} = 2.15$$

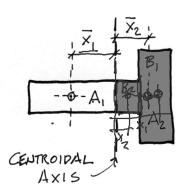
University of Michigan, TCAUP

Structures I

Slide 7 of 21

Static Moment of Area

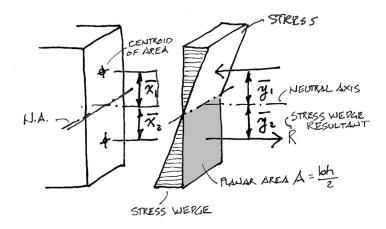
1st moment of area


The tendency of an area alone to rotate about an axis in the plane of that area.

$$Q = A\bar{x}$$

At the Neutral Axis

$$A_{1}\overline{x}_{1} = A_{2}\overline{x}_{2}$$


$$= \beta_{1}x_{1} + \beta_{2}x_{2}$$

2nd moment of area

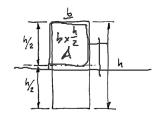
By definition:

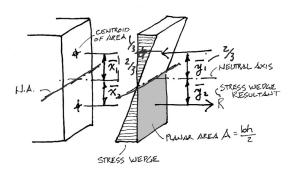
$$I_x = \underline{A} \, \overline{x} \, \underline{y}$$

For a rectangle at the N.A.

$$I_x = \frac{bh^3}{12} \checkmark$$

University of Michigan, TCAUP


Structures I


Slide 9 of 21

Moment of Inertia

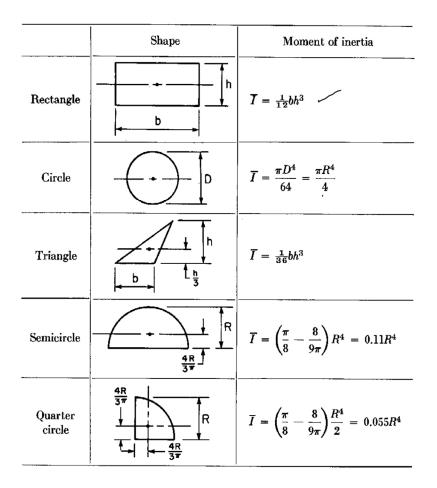
2nd moment of area

$$I_x = A \, \overline{x} \, \overline{y}$$

FOR A RECTANGULAR SECTION:

$$\frac{A}{x} = \frac{b(h_2)}{x} + \frac{h_4}{3}$$

$$y = \frac{2}{3} \frac{h_2}{2} + \frac{h_4}{3}$$


$$\frac{A}{x} \frac{\pi}{3} \frac{\pi}{3} \frac{\pi}{24}$$

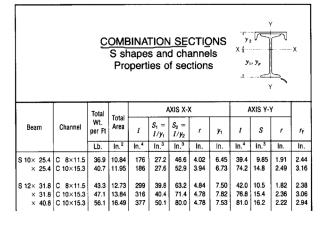
$$A = \frac{b(h_2)}{2} + \frac{h_4}{3} \frac{h}{3} = \frac{bh^3}{24}$$

$$A = \frac{bh^3}{24}$$
FOR TOTAL SECTION:

RECTENCIE
$$I_x = \frac{bh^3}{12}$$

Solutions for basic shapes:

University of Michigan, TCAUP


Structures I

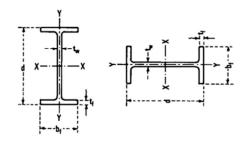
Slide 11 of 21

Moment of Inertia

Solutions for basic shapes:

- Single Shapes
- · Combination Shapes

WIDE FLANGE SHAPES



Theoretical Dimensions and Properties for Designing

				Fla	nge		[Axis X-	<u> </u>		Axis Y-Y	,	
Section Number		Area of Section	Depth of Section d		Thick- ness	Web Thick- ness t _w	Į,	S _x	r _x	l,	S,	Гy	r _T
	lb	in.²	in.	in.	in.	in.	in.4	ín.²	in.	in.4	in.ª	in.	ìn.
W27 x	178	52.3	27.81	14.085	1.190	0.725 (6990	502	11.6	555	78.8	3.26	3.72
-	161	47.4	27.59	14.020	1.080	0.660	6280	455	11.5	497	70.9	3.24	3.70
	146	42.9	27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
N27 x	114	33.5	27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
	102	30.0	27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
	94	27.7	26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
	84	24.8	26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

Section Properties

WIDE FLANGE SHAPES

Theoretical Dimensions and Properties for Designing

			Flange		Axis X-X			Axis Y-Y			
Area of Section A	Depth of Section d		Thick- ness t _f	Web Thick- ness t _w	ł _x	S _x	ι ^x	l _y	S _y	г _у	rт
in.²	in.	in.	in.	in.	in.4	in.³	in.	in.4	in.³	in.	in.
52.3 47.4 42.9	27.81 27.59 27.38	14.085 14.020 13.965	1.080	0.660	6990 6280 5630	502 455 411	11.6 11.5 11.4	555 497 443	78.8 70.9 63.5	3.26 3.24 3.21	3.72 3.70 3.68
33.5 30.0 27.7 24.8	27.29 27.09 26.92 26.71	10.070	0.930 0.830	0.570 0.515	4090 3620 3270 2850	299 267 243 213	11.0 11.0 10.9 10.7	159 139 124 106	31.5 27.8 24.8 21.2	2.18 2.15 2.12 2.07	2.58 2.56 2.53 2.49
	of Section A in.2 52.3 47.4 42.9 33.5 30.0 27.7	of Section A d in.2 in. 52.3 27.81 47.4 27.59 42.9 27.38 33.5 27.29 30.0 27.09 27.7 26.92	of Section Section Width A d b _f in. in. 52.3 27.81 14.085 14.020 42.9 27.38 13.965 33.5 27.29 30.0 27.09 10.015 27.7 26.92 9.990	of Section of Section Width ness Thickness A d b ₁ t ₁ in.² in. in. in. 52.3 27.81 14.085 1.190 47.4 27.59 14.020 1.080 42.9 27.38 13.965 0.975 33.5 27.29 10.070 0.930 30.0 27.09 10.015 0.830 27.7 26.92 9.990 0.745	of Section of Section Width Thickness Thickness A d b ₁ t ₁ t _w in.² in. in. in. in. 52.3 27.81 14.085 1.190 0.725 47.4 27.59 14.020 1.080 0.660 42.9 27.38 13.965 0.975 0.605 33.5 27.29 10.070 0.930 0.570 30.0 27.09 10.015 0.830 0.515 27.7 26.92 9.990 0.745 0.490	of Section of Section Width ness Thick-ness Thick-ness I _x A d b _f t _f t _w t _w in.² in. in. in. in. in. 52.3 27.81 14.085 1.190 0.725 6990 47.4 27.59 14.020 1.080 0.660 6280 42.9 27.38 13.965 0.975 0.605 5630 33.5 27.29 10.070 0.930 0.570 4090 30.0 27.09 10.015 0.830 0.515 3620 27.7 26.92 9.990 0.745 0.490 3270	of Section of Section Width Thickness Thickness Ix Sx A d b1 t1 tw in. in.4 in.3 52.3 27.81 14.085 1.190 0.725 6990 502 47.4 27.59 14.020 1.080 0.660 6280 455 42.9 27.38 13.965 0.975 0.605 5630 411 33.5 27.29 10.070 0.930 0.570 4090 299 30.0 27.09 10.015 0.830 0.515 3620 267 27.7 26.92 9.990 0.745 0.490 3270 243	of Section of Section Width Thick-ness ness ness I _x S _x r _x A d b _f t _f t _w in. in. ³ in. 52.3 27.81 14.085 1.190 0.725 6990 502 11.6 47.4 27.59 14.020 1.080 0.660 6280 455 11.5 42.9 27.38 13.965 0.975 0.605 5630 411 11.4 33.5 27.29 10.070 0.930 0.570 4090 299 11.0 30.0 27.09 10.015 0.830 0.515 3620 267 11.0 27.7 26.92 9.990 0.745 0.490 3270 243 10.9	of Section of Section Width Thick-ness ness ness I _x S _x r _x I _y A d b _f t _f t _w in. in. ³ in. in. ⁴ 52.3 27.81 14.085 1.190 0.725 6990 502 11.6 555 47.4 27.59 14.020 1.080 0.660 6280 455 11.5 497 42.9 27.38 13.965 0.975 0.605 5630 411 11.4 443 33.5 27.29 10.070 0.930 0.570 4090 299 11.0 159 30.0 27.09 10.015 0.830 0.515 3620 267 11.0 139 27.7 26.92 9.990 0.745 0.490 3270 243 10.9 124	of Section Of Section Width Thick-ness Thick-ness I, k Sx rx I, k Sy A d b, t, t, tw tw in. in. <t< th=""><th>of Section of Section Width Thick-ness ness ness I_x S_x r_x I_y S_y r_y A d b_f t_f t_w in. in.³ in. in.⁴ in.³ in. <t< th=""></t<></th></t<>	of Section of Section Width Thick-ness ness ness I _x S _x r _x I _y S _y r _y A d b _f t _f t _w in. in. ³ in. in. ⁴ in. ³ in. in. <t< th=""></t<>

University of Michigan, TCAUP Structures I Slide 13 of 21

Section Properties

PROPERTIES OF SAWN LUMBER SECTIONS

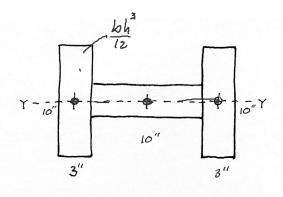
Rectangular:

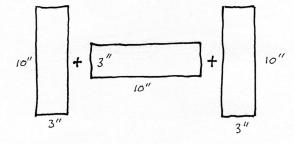
A = bd

 $I = db^3/12$

S = I/c

c = d/2(maximum)


	x
545	Ш

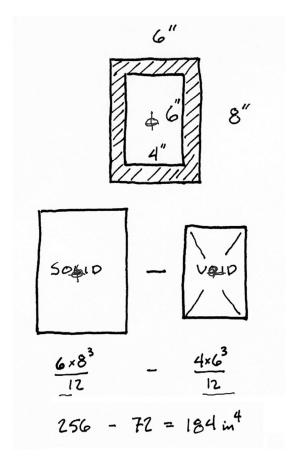

Nominal Size b × d	Actual Size b × d	Area in. ²	$\frac{I_x}{\text{in.}^4}$	$\frac{S_x}{\text{in.}^3}$
1 × 4	$3/4 \times 3\frac{1}{2}$	2.63	2.68	1.53
1×6	" \times $5\frac{1}{2}$	4.13	10.40	3.78
1 × 8	" $\times 7\frac{1}{4}$	5.44	23.82	6.57
1×10	" $\times 9\frac{1}{4}$	6.94	49.47	10.70
1 × 12	" $\times 11\frac{1}{4}$	8.44	88.99	15.83
2×4	$1\frac{1}{2} \times 3\frac{1}{2}$	5.25	5.36	3.06
2×6	$^{\prime\prime}$ \times $5\frac{1}{2}$	8.25	20.80	7.56
2×8	" $\times 7\frac{1}{4}$	10.88	47.64	13.14
2×10	" $\times 9\frac{1}{4}$	13.88	98.93	21.39
2×12	" $\times 11\frac{1}{4}$	16.88	177.98	31.64
3 × 4	$2\frac{1}{2} \times 3\frac{1}{2}$	8.75	8.93	5.10
3×6	" \times $5\frac{1}{2}$	13.75	34.66	12.60
3×8	" $\times 7\frac{1}{4}$	18.13	79.39	21.90
3×10	" $\times 9^{1}_{4}$	23.13	164.89	35.65
3 × 12	" $\times 11\frac{1}{4}$	28.13	296.63	52.73
4 × 4	$3\frac{1}{2} \times 3\frac{1}{2}$	12.25	12.50	7.15
4×6	" \times $5\frac{1}{2}$	19.25	48.53	17.65
4×8	" $\times 7\frac{1}{4}$	25.38	111.15	30.66
4×10	" \times 9\frac{1}{4}	32.38	230.84	49.91
4 × 12	" $\times 11\frac{1}{4}$	39.38	415.28	73.83

NDS

Shapes with common centroidal axes

$$I \text{ solid } + I \text{ solid } = I x$$

$$\frac{6h^{2}}{12} \frac{3(10)^{3}}{12} + \frac{10(3)^{3}}{12} + \frac{3(10)^{3}}{12}$$


$$250 \text{ in}^{4} + 22.5 \text{ in}^{4} + 250 \text{ in}^{4} = 522.5 \text{ in}^{4}$$

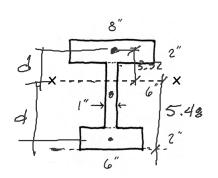
University of Michigan, TCAUP Structures I Slide 15 of 21

Moment of Inertia

Shapes with common centroidal axes

$$I \text{ solid } - I \text{ void } = I x$$

The Transfer Equation or Parallel Axis Theorem,


taken about the x-x axis:

$$\overline{y} = \frac{\sum Ay}{\sum A}$$

$$y$$
-bar = $186/34 = 5.48$ "

$$I_x = \sum \bar{I}_x + \sum (A\underline{d}^2)$$

$$1x = 27.3 + 439.4 = 466.7 \text{ in}^4$$

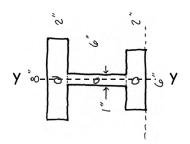
Shape	(A)	у	Ay	<u>I</u> _x	Øin.	Ad^2
2"	$(2)(8) = \underline{16}$	9-	144	$(\frac{1}{12})(8)(2)^3 = \underline{5.3}$	3.52	$(16)(3.52)^2 = 198$
6"	(1)(6) = 6	5	30	$(\frac{1}{12})(1)(6)^3 = 18$	0.48	$6(0.48)^2 = 1.4$
2" 6"	(2)(6) = 12	1	12	$(\frac{1}{12})(6)(2)^3 = 4$	4.48	$12(4.48)^2 = 240$
	$\sum A = 34$	$\sum Ay$	= 186	$\sum \overline{I}_x = 27.3$		$\sum Ad^2 = 439.4$

y-bar = 186/34 = <u>5.48</u>"

 $|x = 27.3 + 439.4 = 466.7 \text{ in}^4$

University of Michigan, TCAUP

Structures I


Slide 17 of 21

Moment of Inertia

The Transfer Equation or Parallel Axis Theorem:

$$I_{y} = \sum \bar{I}_{y} + \sum Ad^{2}$$

Taken about the y-y axis:

Shape	A	Ĭ _Y	Ad^2
2"[16	$(\frac{1}{12})(2)(8)^3 = 85.3$	0 0
e[]	6	$(\frac{1}{12})(6)(1)^3 = 0.5$	0
2"	12	$(\frac{1}{12})(2)(6)^3 = 36.0$	0 0
		$\sum \overline{I}_Y = 121.8$	0

SUMMARY:

$$l_x = 466.7 \text{ in}^4$$

$$l_v = 121.8 \text{ in}^4$$

Radius of Gyration

The distance from the centroid where all area could be collected to yield an equivalent Moment of Inertia.

$$\underline{\underline{I}} = A r^2$$

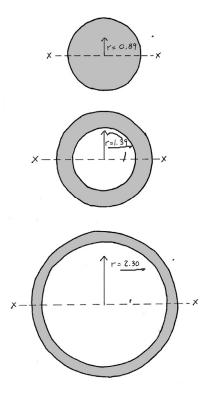
$$\underline{\underline{r}} = \sqrt{\frac{\underline{I}}{A}}$$

I d A

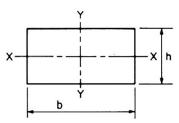
r = 0.289 d

for a rectangle about the N.A

University of Michigan, TCAUP Structures I Slide 19 of 21

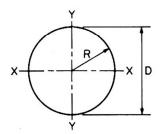

Radius of Gyration

The larger the radius of gyration, the more resistant the section is to buckling.


The areas in the table below are constant, while diameters increase.

OD	ID	t	A	r
3.57	0.00	1.78	10.00	0.89
3.71	1.00	1.35	10.00	0.96
4.09	2.00	1.05	10.00	1.14
4.66	3.00	0.83	10.00	1.39
5.36	4.00	0.68	10.00	1.67
6.14	5.00	0.57	10.00	1.98
6.98	6.00	0.49	10.00	2.30
7.86	7.00	0.43	10.00	2.63
8.76	8.00	0.38	10.00	2.97
9.68	9.00	0.34	10.00	3.30
10.62	10.00	0.31	10.00	3.65

$$\underline{Pcr} = \frac{\pi^2 E}{(KL/r)^2} \leq \text{SLRNDERNKS}$$


Section Formulas

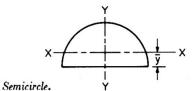
Rectangle

$$A = bh,$$

 $I_x = \frac{1}{12}bh^3,$
 $r_x = \sqrt{I_x/A} = 0.288h.$

Rectangle.

Circle


$$A = \frac{1}{4}\pi D^{2} = \pi R^{2},$$

$$I_{x} = \frac{\pi D^{4}}{64} = \frac{\pi R^{4}}{4},$$

$$r_{x} = \sqrt{I_{x}/A} = \frac{D}{4} = \frac{R}{2},$$

$$J = I_{x} + I_{y} = \frac{\pi D^{4}}{32} = \frac{\pi R^{4}}{2}.$$

Circle.

Semicircle

cole
$$A = \frac{1}{8}\pi D^{2} = \frac{1}{2}\pi R^{2},$$

$$\overline{y} = \frac{4r}{3\pi},$$

$$I_{x} = 0.00682D^{4} = 0.11R^{4},$$

$$I_{y} = \frac{\pi D^{4}}{128} = \frac{\pi R^{4}}{8},$$

$$r_{x} = 0.264R.$$

University of Michigan, TCAUP