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Beam Types A £
A
FIXED FREE.
» Cantilever
+ Simple 7)4,7 791‘
H1HGE ROLLER

Simple with Cantilever

* Continuous (multi-span)

A 57

41 GE ROLLER

A 5 5
Hi&GE ROLLER ROLLER
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Support Conditions

Roller
Fixed in Fy

Hinge (Pinned)
Fixed in Fx
Fixed in Fy

Fixed
Fixed in Fx
Fixed in Fy
Fixed in Mz
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Connection Types

Bearing (or simple)

Slip Critical (or fixed)
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Internal Shear and Moment

Cutting any section through a beam will
reveal internal shear and moment forces

necessary to maintain static equilibrium.

The shears can be determined by
summing vertical forces and the
moments by summing moments.
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Sign Convention for Shear

+ the sum of the vertical forces to the
left of the cut is upwards

- the sum of the vertical forces to the
left of the cut is downwards

Sign Convention for Moment
+ the top fibers are in compression
- the top fibers are in tension

the European moment convention is the
reverse
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Sign Convention for Moment

P
+ positive curvature (holds water) J’
e —

- negative curvature (spills water)

o R .+.
the European moment convention is the .
reverse

w [
r——
g2 Y
, J ..l

P

University of Michigan, TCAUP Structures | Slide 7 of 28

Relationships of Forces and Deformations

There are a series of relationships among forces and deformations in a beam, which can be useful
in analysis. Using either the deflection or load as a starting point, the following characteristics can
be discovered by taking successive derivatives or integrals of the beam equations.
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Methods to Determine Values of Shear and Moment

1. Equilibrium Method

. Select a point along the beam
. Cut a section and draw the FBD
. Solve for the internal shear and moment forces at the section

2. Integration of Equations

. Write the equation of the load function

. Integrate load equation to get shear equation

. Solve integration constant (use end reaction)

. Integrate shear equation to get moment equation

. Solve integration constant (use point with zero moment, e.g. end point)

3. Semi-graphical Method

. Draw load diagram and solve end reactions with equilibrium equations.

. Start at left and construct the shear diagram using point loads and areas on load diagram
. Calculate areas of shear diagram to find change in value on moment diagram

. Find points of zero moment to begin moment diagram, e.g. end points

4. Superposition of Equations

. Break the loading into standard cases
. Use given equations to solve shear and moment for each case
. Add the cases to get combined values of original loading

University of Michigan, TCAUP Structures | Slide 9 of 28

1. Equilibrium Method - procedure
IOK
To plot the change of internal shear or moment ”5 Q
forces, a series of sections can be cut along the K I l 0 7K
beam. The exposed forces can be calculated. e j: 4 e t4
1 K K
A section should not be cut “through” an
applied force, but either a bit to the left or to the Ls
right of the force. K
6" !
H ““ th ({19 thl H loK
Either the “left” or “right” free body diagram may be
used to calculate the forces. The sign convention ’5
described earlier must be consistently applied. K’l\
6 L X2 AIL
1T 1
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1. Equilibrium Method - example
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Tabulated Results of FBD Calculations 1ok
Cut Location Shear Moment 4 \l( 6'

FromR_(f) V (k) M (k-ft)
o o 0 " P4 =
0+ 6 0
1 6 6 K K
+6 +(
2 6 12
3 6 18 V o
4 6 24 _4“ ‘:‘,-4 "
4+ 4 24
5 -4 20 2 4 K-1
6 -4 16
7 -4 12
8 4 8 M
9 -4 4 o
10- -4 0
10+ 0 0
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1. Equilibrium Method - example
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Tabulated Results of FBD Calculations L w= 4KLF
Cut Location Shear Moment :— ! 1\
FromR, (f) V (k) M (k-ft) A T & T
0- 0 0
0+ 16 0
K
1 12 14 tle
2 8 24
3 4 30 v )
4 0 32
5 4 30 e,
6 8 24 32 K-FT
7 12 14 .
L M ol
8+ 0 0 o
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1. Equilibrium Method - example

<%§>f23’1:w=%x
M
¢ XV

Tabulated Results of FBD Calculations

Cut Location Shear Moment
From R, (ft) V (k) M (k-ft)
0- 0 0
0+ 6 0

1 5.78 6.9

2 5.11 11.4
3 4.00 16.0
4 2.44 19.3
5 0.44 20.74
5.2 0 20.78
6 -2.00 20.0
7 -4.90 16.6
8 -8.24 10.0
9- -12.00 0

9+ 0 0
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Relationships of Forces and Deformations - procedure

There are a series of relationships among forces and deformations in a beam, which can be useful
in analysis. Using either the deflection or load as a starting point, the following characteristics can
be discovered by taking successive derivatives or integrals of the beam equations.
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