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Beam Types A $
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» Cantilever
" L
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« Simple with Cantilever
* Continuous (multi-span)
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Support Conditions

Roller
Fixed in Fy
x o
Hinge (Pinned) Hi1 & GE ROLLER
Fixed in Fx
Fixed in Fy
Fixed

Fixed in Fx G gir —
Fixed in Fy / FREE.
Fixed in Mz FIxep
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Connection Types

Bearing (or simple)

Slip Critical (or fixed)
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Internal Shear and Moment

Cutting any section through a beam will
reveal internal shear and moment forces

necessary to maintain static equilibrium.

The shears can be determined by
summing vertical forces and the
moments by summing moments.
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Sign Convention for Shear

+ the sum of the vertical forces to the
left of the cut is upwards

- the sum of the vertical forces to the
left of the cut is downwards

Sign Convention for Moment
+ the top fibers are in compression
- the top fibers are in tension

the European moment convention is the
reverse
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Sign Convention for Moment

P
+ positive curvature (holds water) J’
e —

- negative curvature (spills water) T SN~ —_——. TK
the European moment convention is the Re '+‘ &
reverse
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Relationships of Forces and Deformations

There are a series of relationships among forces and deformations in a beam, which can be useful
in analysis. Using either the deflection or load as a starting point, the following characteristics can

be discovered by taking successive derivatives or integrals of the beam equations.

V= 'f wdx

M = [Vx
6= f o Ix
y= j()c/x
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Methods to Determine Values of Shear and Moment

1. Equilibrium Method
. Select a point along the beam
«  Cuta section and draw the FBD *~

. Solve for the internal shear and moment forces at the section

2. Integration of Equations

. Write the equation of the load function
. Integrate load equation to get shear equation
ablase it L)
. Solve integration constant (use end reaction)
. Integrate shear equation to get moment equation
. Solve integration constant (use point with zero moment, e.g. end point)

3. Semi-graphical Method

. Draw load diagram and solve end reactions with equilibrium equations.

. Start at left and construct the shear diagram using point loads and areas on load diagram
. Calculate areas of shear diagram to find change in value on moment diagram

. Find points of zero moment to begin moment diagram, e.g. end points

4. Superposition of Equations fA

. Break the loading into standard cases
. Use given equations to solve shear and moment for each case
. Add the cases to get combined values of original loading
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1. Equilibrium Method - procedure

lo% ~
(A
. G lo-¢
To plot the change of internal shear or moment 7
forces, a series of sections can be cut along the J/K ' l 0 ax
beam. The exposed forces can be calculated. (%) ‘tlt 4 4 G 4——
_ K
A section should not be cut “through” an v M )
applied force, but either a bit to the left or to the I 5“ M=¢(2)T
right of the force. K )
6" X/
z loK
Either the “left” or “right” free body diagram may be wLﬁ -V=z46-10=4
used to calculate the forces. The sign convention K 4 N 5 () ——
described earlier must be consistently applied. K’l\ ) N M=Gle)- ’g z
6 L XZG N3 36 -2 ’(’
1T 1

2 \Lto: Vz6-toz -4
&t [2«s>-w>
1

X3
1" 48 -40 =g~
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1. Equilibrium Method - example

M lo*
x1mt§ P .*-JLL é jtsM
¢l )V 6 _4__} = 4

N

-l

Tabulated Results of FBD Calculations

.1 lo®
Cut Location Shear Moment 4 } 6
FromR (ft) V (k M (k-ft o
! L (ft) O( ) 0( ) o 1‘4 "
0+ 6 0
1 6 6 6“ i (’K
=2 6 12 e :
4 6 24 5 4'& _J‘ _4 5
4+ -4 24 —
5 4 20 : 24 %!
s e
7 -4 12 [
8 4 8 M
9 -4 4 o
10- -4 o+ &(°)= 10" (C)
10+ 0 0
bo -(o =O
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1. Equilibrium Method - example

(w'XBX/l
G 4 KLF M

lbx:t——)i——n{‘ v

Tabulated Results of FBD Calculations

Cut Location Shear Moment
FromR_(ft) V (k) M (k-ft)
0- 0

—

0+ 0
14
24
30
32
30
24 -

14 i eABoLic

S M .
Hé('—l’)-/’é(__z_?

64 - 31 =32
lo(2) -32(4) = ©

8 -
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1. Equilibrium Method - example

(%) +2
e ] /W:%x
M
K’\éw
¢ £

Tabulated Results of FBD Calculations

Cut Location Shear Moment
From R_(f) V (k) M (k-ft)
0- 0

0

0+ 6 0

1 5.78 6.9

2 5.11 1.4

3 400 160

4 244 19.3

5 0.44 20.74

L

6 -2.00 20.0

7 -4.90 16.6

8 -8.24 10.0

9- -12.00 0

9+ 0 0
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Relationships of Forces and Deformations - procedure

There are a series of relationships among forces and deformations in a beam, which can be useful
in analysis. Using either the deflection or load as a starting point, the following characteristics can
be discovered by taking successive derivatives or integrals of the beam equations.

i | load =g O 2 o &

5 A B w
B Load — = dy _dv1 _w
1
L

, Al B v 3
¥ :J.““{“‘ Shear VD‘%‘:“ shear v 8 T
{

R
V= [ Vix o? 2
= ,[1 o Moment M \ moment L AP |

= g 2l
— Kl RS 8 v slope =3
L,!él/:::: <

?

8g-6a° 1O

Y Deflection :
— Y_\L deflection = y
—

& Yg~ Yp = O0x
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2. Shear and Moment by Integration - example

One method of solving shear and moment forces is to write the loading equation and solve
the integration equations for the shear and moment. One problem using this method can be
finding the constant of integration, particularly with discontinuous load functions.

-W Load (@) ﬁ

£
V=fude - wiic-o )
V =—wx+C /
— = Shear
s awl fo)
V =—wx+ > g/z:)( i
|
M =IL"dx f
w o, wl
M __E“\ +?“\+(‘ Moment OQ
W wl
M=——x*+—x
2 2
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3. Shear and Moment by Semi-graphical Method — diagram relationships

By recognizing the diagrammatic relationships between curves and their derivatives and
integrals, shear and moment diagrams can be constructed based on areas and slopes of those
curves.

w
Moving from Upper to Lower Diagrams: Jé_
L
« The area between any two points on the wl 1\ T/\gL
upper diagram is equal to the change in 2 Z

value between same points on the lower L
diagram. Q ‘ A=-wl/z | l
W |

* The degree of the curve increases by one
for each diagram.

|
|
wL® I
+ The value on the upper diagram is equal to wl A= "
the slope of the lower diagram. = !
*  Where the upper diagram crosses the 0 V o .
axis, the lower diagram is at a maximum or i
minimum. ; Y wl
. . . e ¢
» Points of inflection or “contraflexure” f , %‘

+

=
)
D
/
|

(between + and — curvature) on the elastic
curve (deflected shape) are points of zero
moment.

University of Michigan, TCAUP Structures | Slide 16 of 28






