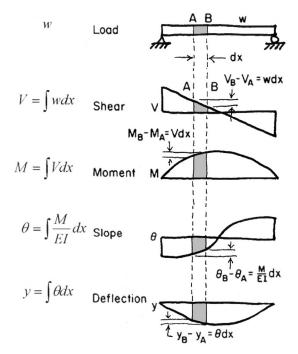
Bending and Shear in Simple Beams Part 2

- Diagrams by Areas (Semi-graphical)
- · Diagrams by Equations
- Examples in Form (catenary curves)



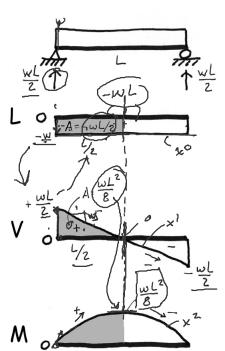
University of Michigan, TCAUP Structures I Slide 1 of 14

3. Shear and Moment by Semi-graphical Method – diagram relationships

By recognizing the diagrammatic relationships between curves and their derivatives and integrals, shear and moment diagrams can be constructed based on areas and slopes of those curves.

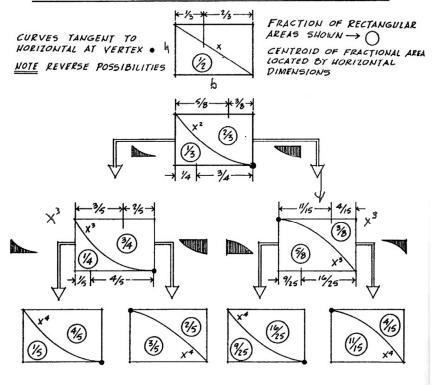
Moving from Upper to Lower Diagrams:

- The <u>area</u> between any two points on the upper diagram is equal to the <u>change</u> in value between <u>same</u> points on the lower diagram.
- The <u>degree of the curve increases</u> by one for each diagram.
- The value on the upper diagram is equal to the slope of the lower diagram.
- Where the upper diagram crosses 0 on the
 axis, the lower diagram is at a maximum or
 minimum.
- Points of inflection or "contraflexure" (between + and – curvature) on the elastic curve (deflected shape) are points of zero moment.



3. Semi-graphical Method

FRACTIONAL AREAS OF ENCLOSURE RECTANGLES



University of Michigan, TCAUP

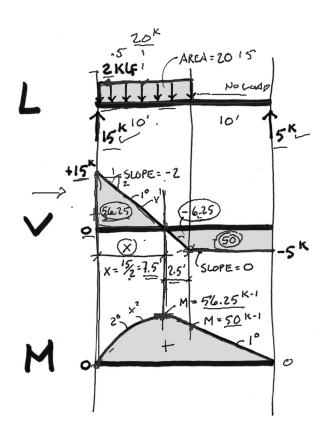
Structures I

Slide 3 of 14

3. Semi-graphical Method

Procedure:

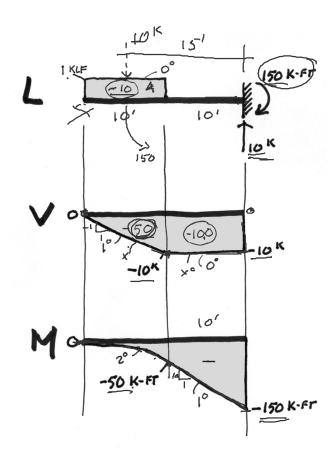
- 1. Find end reactions
- 2. Start at <u>left end of V-Diagram</u> and "apply" load from left to right
- 3. Calculate areas of V-Diagram
- 4. Find max. and min. values on M-Diagram using V-Diagram areas between axis crossings.
- 5. Check slope and + or values



3. Semi-graphical Method

example

Cantilever Beam

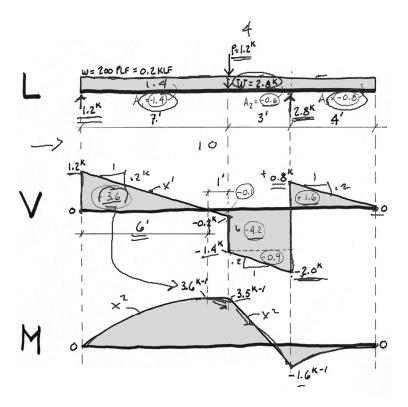


University of Michigan, TCAUP Structures I Slide 5 of 14

3. Semi-graphical Method

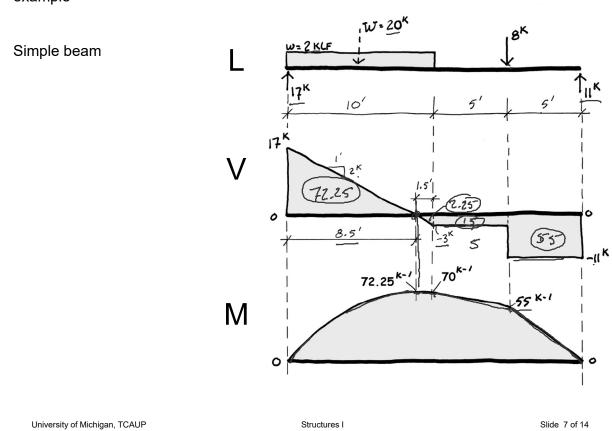
example

Beam with cantilever

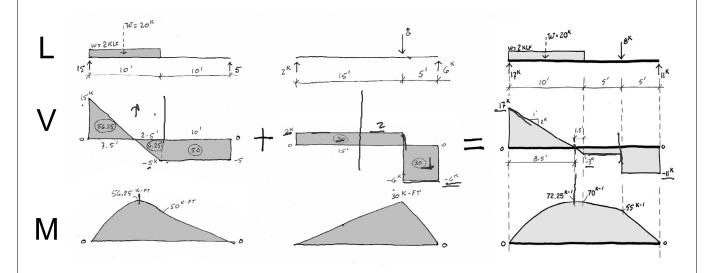


3. Semi-graphical Method

example



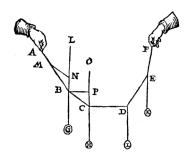
3. Semi-graphical Method - Superposition

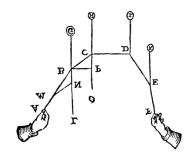


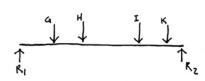
Slide 8 of 14

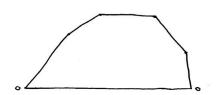
Moment Diagram vs. Catenary Curve

For a gravity loaded simple span beams, the shape of the of the moment diagram is the inverse of the catenary curve.









University of Michigan, TCAUP

Structures II

Slide 9 of 14

Equations Method

For simple spans:

V_{max} is the larger reaction

For symmetric loadings:

M_{max} is at C.L.

For cantilevers:

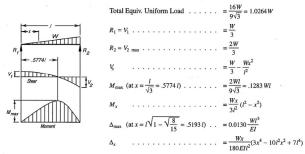
Both $\mathrm{V}_{\mathrm{max}}$ and $\mathrm{M}_{\mathrm{max}}$ are at the support

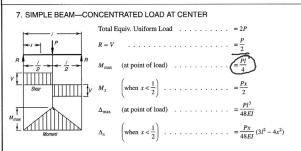
In these equations: w = load per unit length (PLF or KLF)

W = the total load (LB or KIP)

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load ... = wl R = V ... = $\frac{wl}{2}$ M_{max} (at center) ... = $\frac{wvl}{8}$ M_{max} (at center) ... = $\frac{swl^2}{384El}$ Δ_x ... = $\frac{swl^4}{384El}$ 2. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO ONE END





AISC Manual

4. Superposition of Equations

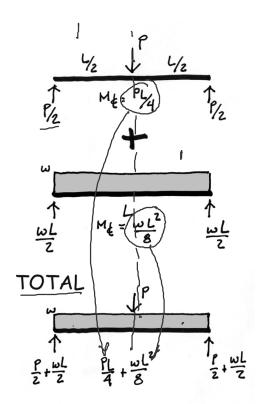
Equations of shear or moment may be combined (superimposed) for any number of cases.

BUT

The appropriate location along the beam for which the equation is valid must be maintained

Thus

At the reaction, V = P/2 + wL/2And at the C.L. $M = PL/4 + wL^2/8$

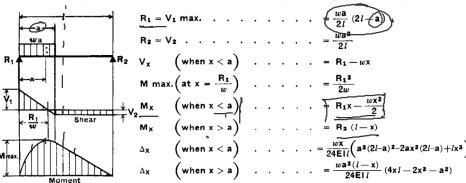


University of Michigan, TCAUP Structures I Slide 11 of 14

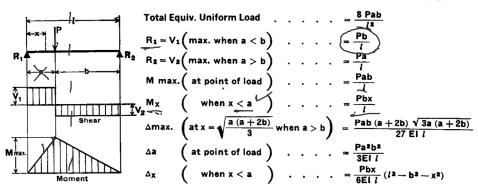
Non-symmetric

For more complex loads, care must be taken to combine equations at the same location or point on the beam (x).

5. SIMPLE BEAM-UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

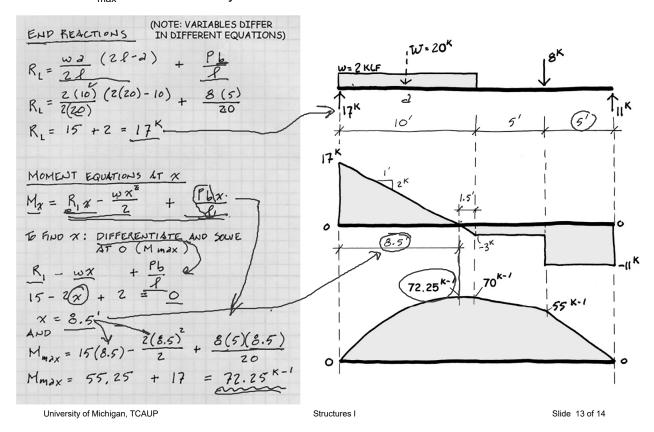


8. SIMPLE BEAM—CONCENTRATED LOAD AT ANY POINT



4. Superposition of Equations - example

find x at M_{max} for combined asymmetric cases



Simple vs. Continuous Beams

- Simple Beam
 - End moments = 0
 - when symmetric, M_{max} at C.L. e.g. wL²/8 = 0.125wL²
- Continuous Beam
 - Exterior end moments = 0
 - Interior support moments are usually negative
 - Mid-span moments are usually positive
 - End + Mid = $0.125wL^2$

Note: moments shown reversed

