
Architecture 314 Structures I

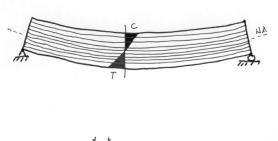
Bending Stresses in Beams

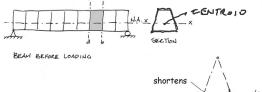
- Elastic Bending
- Stress Equation
- Section Modulus
- Flexure Capacity Analysis
- Flexure Beam Design

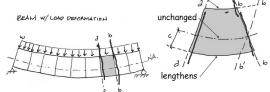
University of Michigan, TCAUP

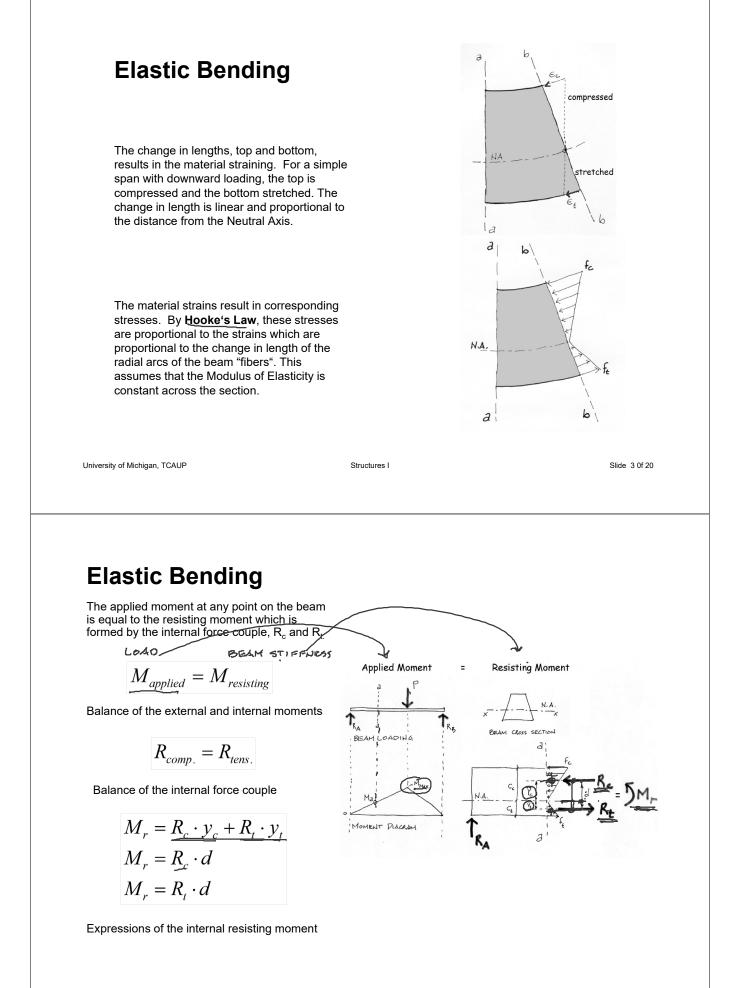
Structures I

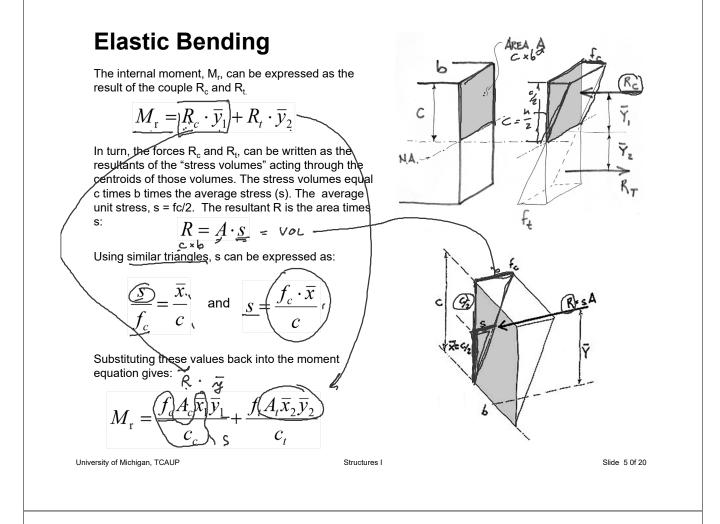
Slide 1 0f 20

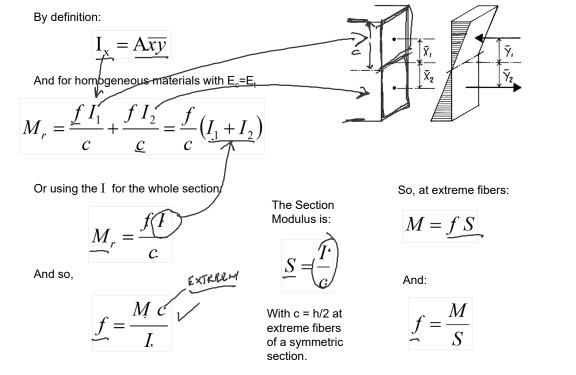

Elastic Bending

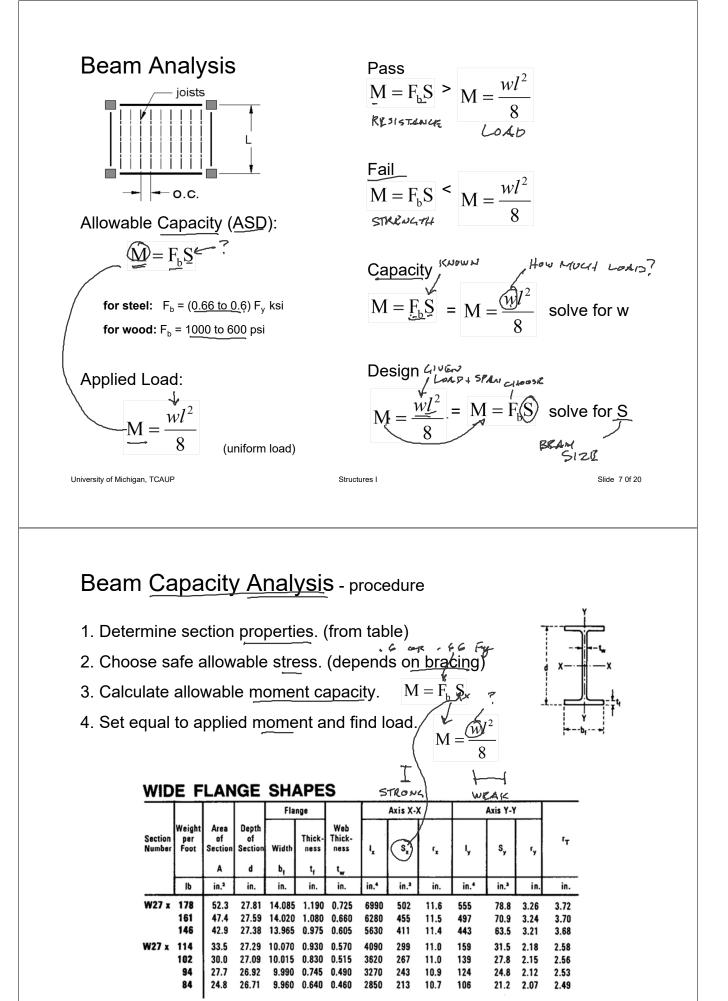

Flexure results in internal tension and compression forces, the resultants of which form a couple which resists the applied moment.

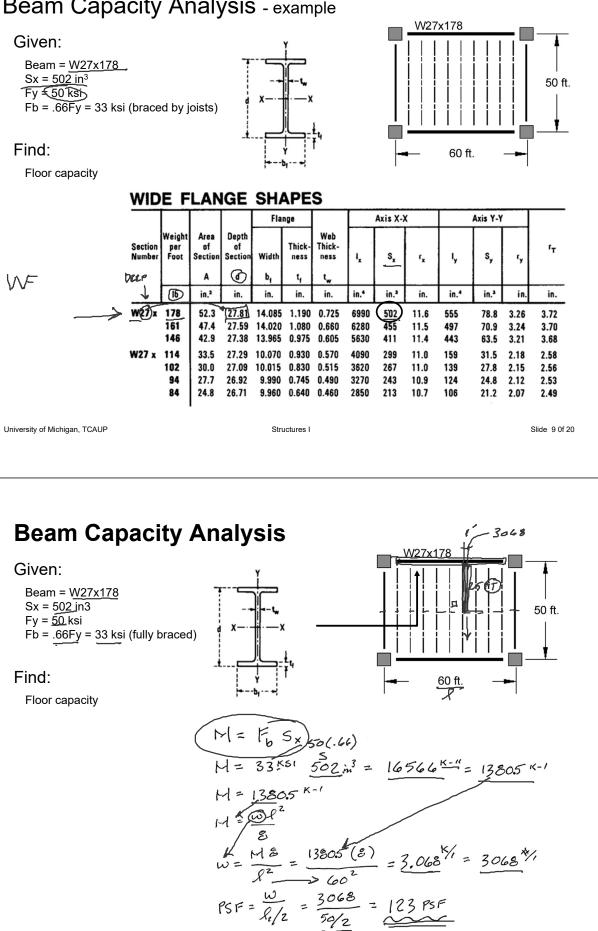

In the initial unloaded state, all transverse sections are parallel.


The application of load causes the member to bend in a curve. This means the initial parallel plane sections, while remaining plane, now follow the radii of the curves.

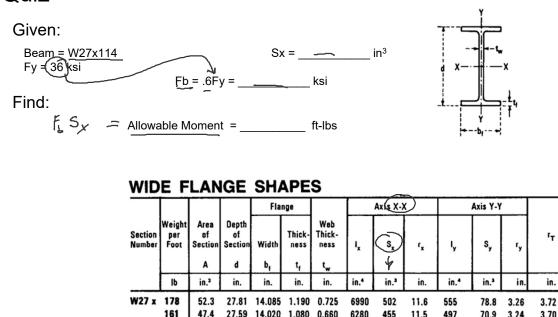

Notice that by the geometry of the curved member the top edge is shortened and the bottom edge is lengthened. Only the neutral axis remains its original length.







Elastic Bending



Beam Capacity Analysis - example

Quiz

101	4/.	4 27.59	14.020	1.080	0.000	6280	455	11.5	49/	10.9	3.24	3.70
146	42.	4 27.59 9 27.38	13.965	0.975	0.605	5630	411	11.4	443	63.5	3.21	3.68
	33.	5 27.29	10.070	0.930	0.570	4090	299	11.0	159	31.5	2.18	2.58
102	30.	0 27.09	10.015	0.830	0.515	3620	267	11.0	139	27.8	2.15	2.56
94	27.	7 26.92	9.990	0.745	0.490	3270	243	10.9	124	24.8	2.12	2.53
84	24.	8 26.71	9.960	0.640	0.460	2850	213	10.7	106	21.2	2.07	2.49

Structures I

University of Michigan, TCAUP

Section Properties

Section Modulus Table

Sorted by Sx for design selection with:

S = I/c

 f_{b} is actual stress

 F_{b} is allowable stress

• for bracing
$$< L_c$$
, $F_b = 0.66F_c$

• for bracing
$$< L_u$$
, $F_b = 0.6F_v$

 F_v is the yield stress

$$M_r = .66Fy S_x$$

So the design equations is:

 $S_x = M_{applied}/F_b \leftrightarrow 600$

$F_y = 50$ ksi		$F_y = 50 \text{ ksi}$			Depth c	$F_y = 36 \text{ ksi}$			
Lc	Lu	M _R	S _x	Shape	d	F'y	Lc	Lu	M _B
Ft	Ft	Kip-ft	In. ³		In.	Ksi	Ft	Ft	Kip-ft
10.6	11.2	2130	776	W 44×198	427/8	-	12.5	15.5	1540
14.1	15.2	2110	769	W 40×199	38%	_	16.6	20.0	1520
11.8	45.7	2110	769	W 21×333	25	_	13.9	63.4	1520
14.2	19.8	2080	757	W 33×221	337/8	_	16.7	27.6	1500
13.5	24.0	2050	746	W 30×235	311/4	_	15.9	33.3	1480
12.8	29.0	2040	742	W 27×258	29	_	15.1	40.3	1470
10.9	15.1	1980	719	W 36×210	36¾	_	12.9	20.9	1420
11.9	34.7	1970	718	W 24×279	263/4	-	14.0	48.2	1420
12.8	16.7	1880	708	W 40×192	381/4	37.1	17.8	19.7	1400
11.6	42.7	1900	692	W 21×300	241/2		13.7	59.4	1370
14.1	17.9	1880	684	W 33×201	335/8	_	16.6	24.9	1350
10.6	12.3	1880	682	W 40×183	39				
						-	12.5	17.1	1350
12.7	26.7 13.9	1850	674 664	W 27×235	285/8	-	15.0	37.0	1330
13.5	21.4	1830	663	W 36×194	361/2	-	12.8	19.4	1310
13.5		1820	644	W 30×211	31	-	15.9	29.7	1310
11.5	31.4	1770		W 24×250	26%	-	13.9	43.7	1280
11.5	39.2 24.9	1740	632	W 21×275	241/8	=	13.6	54.5	1250
		1720	624	W 27×217	28%	-	14.9	34.5	1240
10.8	49.0	1720	624	W 18×311	223/8	-	12.7	68.1	1240
10.8	13.1	1710	623	W 36×182	36%	-	12.7	18.2	1230
10.4	11.0	1650 -	599	W 40×167	38%	_	12.5	14.5	1190
13.5	19.4	1640	598	W 30×191	30%	_	15.9	26.9	1180
11.7	29.0	1620	588	W 24×229	26	_	13.8	40.3	1160
10.8	12.2	1600	580	W 36×170	361/8	_	12.7	17.0	1150
11.4	35.5	1560	569 \$	W 21×248	233/4	_	13.5	49.3	1130
10.6	45.0	1550	564	W 18×283	21%		12.6	62.6	1120
12.6	22.4	1530	5561	W 27×194	281/8	_	14.8	31.1	1100
10.3	13.8	1510	549	W 33×169	33%	-	12.1	19.2	1090
10.7	11.4	1490	542	W 36×160	36	_	12.7	15.7	1070
13.4	17.5	1480	539	W 30×173	301/2	_	15.8	24.2	1070
11.7	26.5	1460	531/	W 24×207	25%	_	13.7	36.7	1050
10.5	42.2	1410	5144	W 18×258	211/2	-	12.4	58.6	1020
8.5	10.7	1410	512	W 40×149	381/4		11.9	12.6	1010
11.4	32.7	1410	512	W 21×223	23%	-	11.9	45.4	1010
10.5	11.3	1390	504	W 21×223 W 36×150	23% 35%	_			
12.6	20.1	1390	504	W 27×178	273/4	-	12.6	14.6	998
12.6	20.1	1380	491	W 27×178 W 24×192	27%	-	14.9	27.9	994
10.4	12.2	1350	491			-	13.7	34.3	972
10.4	38.8	1340	487	W 33×152	33½ 21	-	12.2	16.9	964
10.4	38.8		466	W 18×234		-	12.3	53.8	923
12.6	29.8 18.3	1270 1250	461	W 21×201	23 27%	-	13.3	41.3	913
12.6	18.3	1250	455 (W 27×161		-	14.8	25.4	901
	22.8	1240	IL 450	W 24×176	251/4	-	13.6	31.7	891

American Institute of Steel Construction

Slide 11 0f 20

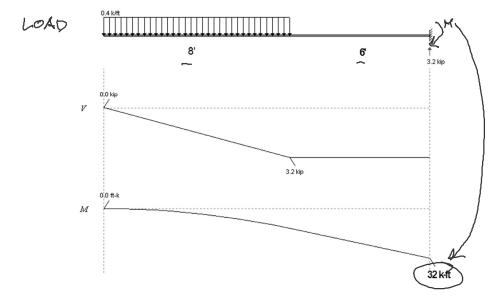
Beam Design - procedure

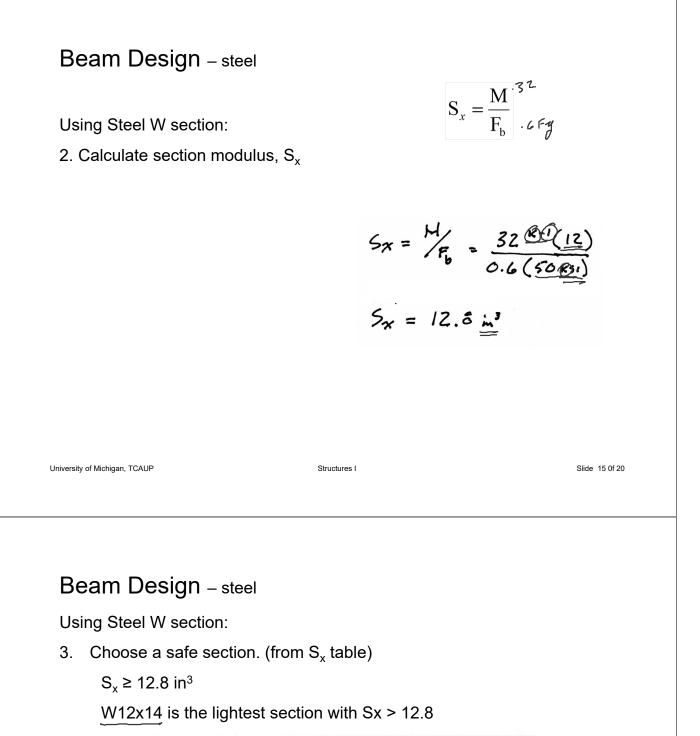
- 1. Choose a steel grade and allowable stress.
- 2. Determine the applied moment (e.g. moment diagram)
- 3. Calculate the section modulus, S_{2}
- 4. Choose a safe section. (from S_x table)

	ALLO	WABL		ESS DESIG	/ .		FION T	TABLE	[∎] S _x
	$F_y = 50$	<u>(si</u>	Ø	15	Depth			$F_y = 36$	si
Lc	Lu	M _R	S _x	Shape	d	F'y	L _c	Lu	M _R
Ft	Ft	Kip-ft	In ³		In	Ksi	Ft	Ft	Kip-ft
2.9 5.4 3.6 4.7	3.6 14.4 4.4 7.1	47 46 45 42	17.1 16.7 16.2 15.2	W 12×16 W 6×25 W 10×17 W 8×18	12 63% 101% 81%		4.1 6.4 4.2 5.5	4.3 20.0 6.1 9.9	34 33 32 30
2.5 3.6 5.4 5.3	3.6 3.7 11.8 12.5	41 38 37 36	14.9 13.8 13.4 13.0	W 12×14 W 10×15 W 6×20 M 6×20	117/8 10 61/4 6	54.3 — 62.1 —	3.5 4.2 6.4 6.3	4.2 5.0 16.4 17.4	30 27 27 26
1.9 3.6 2.8	2.6 5.2 3.6	33 32 30	12.0 11.8 10.9	M 12×11.8 W 8×15 W 10×12	12 8½ 9%		2.7 4.2 3.9	3.0 7.2 4.3	24 23 22

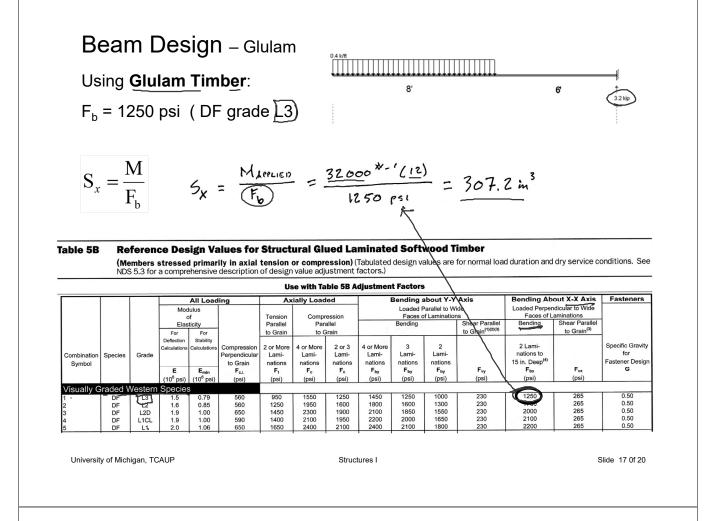
 $\frac{M}{F_b}$

University of Michigan, TCAUP


Structures I


Slide 13 0f 20

Beam_Design - steel


Using Steel W section:

- 1. Choose a steel grade: Using $F_y = 50$ ksi $F_b = 0.6 F_y$
- 2. Determine the applied moment

				RESS DESIC shapes used					S,			
$F_{\gamma} = 50$ ksi		$F_{y} = 50$ ksi		$F_{y} = 50$ ksi		$F_{\rm y} = 50$ ksi		Depth			$F_y = 36 k$	si
Lc	Lu	M _R	S_x	Shape	d	F'y	L _c	Lu	M _R			
Ft	Ft	Kip-ft	In ³	1	In	Ksi	Ft	Ft	Kip-ft			
2.9	3.6	47	17.1	ຈົ້າ ₩ 12×16	12	_	4.1	4.3	34			
5.4	14.4	46	16.7	W 6×25	63/8		6.4	20.0	33			
3.6	4.4	45	16.2	▲ W 10×17	101/8		4.2	6.1	32			
4.7	7.1	42	15.2	W 8×18	81⁄8	-	5.5	9.9	30			
2.5	3.6	41	14.9	W 12×14	111/2	54.3	3.5	4.2	30			
3.6	3.7	38	13.8	W 10×15-	10	-	4.2	5.0	27			
5.4	11.8	37	13.4	W 6×20 -	61/4	62.1	6.4	16.4	27			
5.3	12.5	36	13.0	M 6×20⁄	6	-	6.3	17.4	26			
1.9	2.6	33	12,0	M 12×11.8	12	_	2.7	3.0	24			
3.6	5.2	32	11.8	W 8×15	81/8	_	4.2	7.2	23			
2.8	3.6	30	10.9	W 10×12	97/8	47.5	3.9	4.3	22			

Section Properties

Using Glulam Timber:

Glulam Timbers - 8 3/4" wide

 S_x required = 307.2 in³

Use 8 ³/₄" x 15" Sx = 328.1 > 307.2 in³

131× @ ×	24	= 21.82 \$
<u> </u>	- (

Depth	Area		X-X Axis		Y-Y	Axis
d (in.)	$A(in.^2)$	$I_x(in.^4)$	$S_x(in.^3)$	r _x (in.)	$I_y(in.^4)$	$S_y(in.^3)$
	1. C. C. L. B. C. C.	(8-3/4 in. Width	i etta andara	$(r_y = 2.$	526 in.)
9.	78.75	531.6	T18.1	2.598	502.4	114.8
10-1/2	91.88	844.1	160.8	3.031	586.2	134.0
12	105.0	1260	210.0	3.464	669.9	153.1
13-1/2	118.1	1794	265.8	3.897	753.7	172.3
15)	131.3	2461	1,328.1	4.330	837.4	191.4
16-1/2	144.4	3276	397.0	4.763	921.1	210.5
18	157.5	4253	472.5	5.196	1005	229.7
19-1/2	170.6	5407	554.5	5.629	1089	248.8
21	183.8	6753	643.1	6.062	1172	268.0

Table 1C	Section Properties of Western Species Structural Glued Laminated Timber (Cont.)

Section Properties

PROPERTIES OF SAWN LUMBER SECTIONS

x x

Sawn Lumber

$\frac{\text{Nominal Size}}{b \times d}$	Actual Size b \times d	Area in. ²	I_x in. ⁴	$\frac{S_x}{\text{in.}^3}$
1 × 4	$3/4 \times 3\frac{1}{2}$	2.63	2.68	1.53
1×6	$" \times 5\frac{1}{2}$	4.13	10.40	3.78
1×8	$'' \times 7\frac{1}{4}$	5.44	23.82	6.57
1×10	$" \times 9^{1}_{4}$	6.94	49.47	10.70
1 × 12	$" \times 11\frac{1}{4}$	8.44	88.99	15.83
2×4	$1\frac{1}{2} \times 3\frac{1}{2}$	5.25	5.36	3.06
$\overline{2} \times \overline{6}$	" × 5½	8.25	20.80	7.56
2×8	$'' \times 7\frac{1}{4}$	10.88	47.64	13.14
2×10	$'' \times 9\frac{1}{4}$	13.88	98.93	21.39
2×12	$'' \times 11\frac{1}{4}$	16.88	177.98	31.64
3×4	$2\frac{1}{2} \times 3\frac{1}{2}$	8.75	8.93	5.10
3×6	$'' \times 5\frac{1}{2}$	13.75	34.66	12.60
3×8	$'' \times 7\frac{1}{4}$	18.13	79.39	21.90
3×10	$" \times 9\frac{1}{4}$	23.13	164.89	35.65
3×12	$'' \times 11\frac{1}{4}$	28.13	296.63	52.73
4×4	$3\frac{1}{2} \times 3\frac{1}{2}$	12.25	12.50	7.15
4×6	$'' \times 5\frac{1}{2}$	19.25	48.53	17.65
4×8	$'' \times 7\frac{1}{4}$	25.38	111.15	30.66
4×10	$" \times 9\frac{1}{4}$	32.38	230.84	49.91
4×12	$'' \times 11\frac{1}{4}$	39.38	415.28	73.83

University of Michigan, TCAUP

Structures I

Slide 19 0f 20

Modes of Failure

Strength

- Tension rupture
- <u>Compression</u> crushing Column
- Flexure
- Shear

Stability

- Column buckling
- Beam lateral torsional buckling

Serviceability

- Beam deflection
- Building story drift
- cracking

