Architecture 314
Structures |

Deflection of Structural Members

Slope and Elastic Curve

Deflection Limits
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Deflection

Axial fiber deformation in flexure
results in normal (vertical) deflection.

The change in lengths, top and bottom, T
results in the material straining. For a

w 3 °

simple span with downward loading, e wy; mﬁ\/’ R
the top is compressed and the bottom \ w
p is comp »,u \

stretched.

The material strains result in
corresponding stresses. By Hooke's
Law, these stresses are proportional to
the strains which are proportional to
the change in length of the radial arcs
of the beam “fibers".
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Slope

* The curved shape of a deflected beam is
called the elastic curve

+ The angle of a tangent to the elastic
curve is called the slope, and is
measured in radians.

» Slope is influenced by the stiffness of
the member:
— material stiffness E, the modulus of
elasticity
— sectional stiffness I, the moment of
inertia,
— as well as the length of the beam, L

tangent S
B.%
\\\\""”’ -——d‘
elastic curve : ~ Stepg = o
. 180
degrees = radians —
/4

Stiffness %
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Deflection
J/P
» Deflection is the distance that a beam bends

from its original horizontal position, when
subjected to loads.

» The compressive and tensile forces above and
below the neutral axis, result in a shortening
(above n.a.) and lengthening (below n.a.) of the
longitudinal fibers of a simple beam, resulting in
a curvature which deflects from the original
position.
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Axial Stiffness

Stiffness = %
L

Flexural Stiffness

Stiffness = E—L
L




Deflection Limits
(serviceability)

» Various guidelines have been
derived, based on usage, to
determine maximum allowable
deflection limits.

roof ponding = ;
from IRC, Josh 2014

» Typically, a floor system with a LL

H H H TABLE 1604.3
deflection in excess of L/360 will DEFLECTION LIMITS® b "
feel bouncy or crack plaster. CONSTRUCTION L | Sorw!'| Dsr%®
Roof members:©
. - Supporting plaster ceiling 1360 | 1360 | 1240
« Flat roofs require a minimum Supporting nonplaster ceiling 1240 | 1240 | 1/180
” . . N g ceiling 1/180 /180 /120
slope of 4" / ft to avoid ponding. b e, 4
Floor members /360 - /240

“Ponding” refers to the retention

Exterior walls and interior

of water due solely to deflection of Sarations: — |iEm | -
- : With brittle finishes
relatively flat roofs. Progressive it b Enihos — | 20 | —
deflection due to progressively Far bl _ — | mso
more impounded water can lead Gisntongss _ o /120
to CO”apse' International Building Code - 2006
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Relationships of Forces and Deformations

There is a series of relationships involving forces and deformations along a beam, which can be useful in
analysis. Using either the deflection or load as a starting point, the following characteristics can be discovered by
taking successive derivatives or integrals of the beam equations.

&
/X A B
w LOAD | Jom 1 _ dly dV 1 w
tm A 198 = = E T E
—  —dx
{
X A B Ve-Va=wdx
|
V= [wde SHEAR .V = gy P MLV
T dz3 de EI  EI
Ms - Ma = Vdx z
| Y _ X
M = [Vax | —_\ Py M
MOMENT M —_ e =
I moment pr El

.5(3
0=[M 4 stope 0 P/’_ .
El ___J-Jé* slope = d_i

Bs- Ba = (Mdx)/(E)

y=|6dx
.[ DEFLECTION y / deflection = y
ys- ya = Bdx Mhx
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Slope and Deflection in
Symmetrically Loaded Beams

Maximum slope occurs at the ends of the beam

A point of zero slope occurs at the center line.
This is the point of maximum deflection.

+ Moment is positive for gravity loads.

» Shear and slope have balanced + and - areas.

+ Deflection is negative for gravity loads.
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tangent tangent

L/2 L/2

—e

LOAD

. e

S B

PR elastic curve pr2

SHEAR

MOMENT

(PL?)/(16El)

SLOPE

—
P/ GEMﬁ’/'
z

DEFLECTION™ 7

A= (PL?)/(48El)
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Cantilever Beams

* One end fixed. One end free

* Fixed end has maximum moment,
but zero slope and deflection.

* Free end has maximum slope and

L , L

deflection, but zero moment.

+ Slope is either downward (-) or M
upward (+) depending on which PLL
end is fixed.

S o

» Shear sign also depends on which
end is fixed.

* Moment is always negative for
gravity loads.

+ Deflection is always negative with
maximum at the free end for gravity loads.
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kx' Pf_z /x7- —xl: jJL
2
0 +
z
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Deflection Quiz

For the beam shown, the downward point load produces an upward deflection on the
cantilever. Sketch each of the diagrams below to show the beam behavior for this case.

Load \l,P

Xep2

e
N

/ ]?7_

X :
-~
Moment / \ O
—~

v | l

Slope l + l +
’ /7’

Deflection ‘

W

g
O]
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Methods to Calculate Deflection
Integration 4 e . &
can use to derive equations 53 B it
o | |
PRVY]
Diagrams Vo
symmetric load cases - I
Diagrams (by parts) A f P
asymmetric load cases 2 l " '} L +%— ¥
Equations wl_::g 1 5o 04
single load cases Y co——— 334 EL

Superposition of Equations
multiple load cases
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P 4 3
w J/ 015 ﬁ’.’g— + f_’!i..
F@ 284EL | 4BEL
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Deflection by Integration

Load <
oa ° = - wW
-, 0 g
wf ;
Shear ¢ Dy 1
G ye el
¢ N, ex=" g=C p
T o D) A
Nec
jg=ox L)
&
P
2
Moment Sg o O,Q 4 =‘%’5— + f;’_ZZS +C
e x=0 4=0
o=-2+&icC . CZ0
[ = 2x® , wlx
I =7 *=%
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Deflection by Integration
Moment l = - ‘*’"z+°-’ff‘ —
x} —_-‘—w’xs + Lﬁ.:-( i‘; ,',.C
Slope EI 53 o o 372 z t=.
— P €¢=’Q§ <,7,9_
o=-wfl, Wl £ C
be 4 4 "7
C=-Z ."‘i:’iz EA
3
B S
Z G 4 24
£ 3
Deflection 51 5;} ol wa'l wpxd ~ w]ae
12
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?a;_f_*‘

Cx= a=Q WAL

L—> e x=X/2 (max defl.)

g-—w/d w!"__ qu
zllcw) 12(8) 4 ()

g "/gwj %u.f“ ./&ujq

48 4 48
P AN = ﬂv?
48 384 ey

= -2
d° e
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Deflection by Diagrams

Load

Shear

Moment

Slope (El)

Deflection (El)
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Table D-24 . Engel

FRACTIONAL AREAS OF ENCLOSURE RECTANGLES

CURVES TANGENT T0
HORIZONTAL AT VERTEX e

NOJTE REVFESE POS5IBILITIES

N

k-5

2 ——3}

@\

— % —fc %

X

FRACTION OF RECTANGULAR

AREAS SHowN —>

CENTROID OF FRACTIONAL AREA
{OCATED BY WHORIZONTAL

DIMENS(oNS

]

”/5—’| s
T
x3

A %sk—1%5s—)|
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Deflection by Diagrams
example 1

BEAM: WIGxX 36
=448 in4
E=30x10%Ks51 &
32w (Ksi

- o5 —

A Vs b—"%s—

LOADING DIAGRAM

SHEAR DIAGRAM

MOMENT DIAGRAM

e St
3 | l
. 1
siore pusam(e) @) |G i
125 s00_[IRITIER =1 —
+366 sl JA‘.
lear @ @ T = -3

4 = %6%}(10)2 e

DEFLECTION DIAGRAM (E1)
K er3 4 [ 4
- 3f8e ¥ > L
30000 %s; st == X
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Deflection by Diagrams
example 2 g gt gk
_ B
E = 29000 ksi - zAS 1
I =400 in* T et Gl
]5“ ,.)‘o IISK : Fr
R o]
gt il o - 1% @
SHede RS G i,
‘ J —15 %= SHEols
g Prlomg
i Lo
MoMErT & E ;
go15 ) [0
X . Ci i
S
@ g
7 ; Calculated as
I-(-—‘;/a———‘) %—)I s a triangle
l
|
l
. - | G
—’I %‘(—-3/ 74;2"”’ L “waaf g
“4 [\ 8085 29000 (doo) =~
i N
7
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Diagrams by Parts

© marks vertex which must be present for area equations to be valid.

et v b P v e
| K-F gk 1K 3l< LK wa46
L —2 B o J/ q' qu _ZG(,K‘ 26" i( 1 —2'::__’__qi' _Ex_zl;goi..
l . I ¥
4 b ‘(L s L
@<
o C—
Ll
[oE=se
=4
"ZéK-F
i - ”3 T 3 I
K-F
> ) 2338 K g @
j 33k g Tl
AEI . n ‘ I (0.0297 w) (0.020% W)
! :l 3 -3851"""
SRRT. T -5858" ¢2.54" :‘44613 &-F3
C2.857) £1.897 ) (-4.35")
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Methods to Calculate Deflection
Integration 8
can use to derive equations 5 dx o e 4° =
d 7 T
Diagrams o
symmetric load cases o
Pl
Diagrams (by parts) e lﬁ S JIL ; l/[’z
asymmetric load cases f} =1 t '
Equ W 4 Fw/p“
single load cases A‘.'".F-TT:B] 3384 EL
Superposition of Equations 5wp4 p/‘ﬁ

multiple load cases
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Deflection: by Equations

 Deflection can be determined by the use
of equations for specific loading
conditions.

» See posted pages for more equations. A
good source is the AISC Steel Manual.

+ By “superposition” equations can be
added for combination load cases. Care
should be taken that added equations all
give deflection at the same point, e.g.
the center line.

* Note that if beam lengths and load (w)
are entered in feet, a conversion factor of
1728 in%/ft3 must be applied in order to
compute deflection in inches.

University of Michigan, TCAUP

\

Beam Load and Support Actual Deflection”
' 3
w Fr C
LIy LT 560 (1722
DA | W— Bmax = d)
U [N]
(a) Uniform load, simple span (at the centerline)
q
2 | w2
- AMA(_ o max - 48EI
1
(b) Concentrated load at midgpan (at the centerline)
P & P
L3 i = i = A JBPE _ P2
e — — m = 648El | 28.2EI
L
(c) Two equal concentrated IJ«ds at third points (at the centerline)
P P‘ [
va | ua |'va | ua
i i pL
M 20.1E]
(d) Three equal conccnlml:l loads at quarter points (at the centerline)
1<<Lj7$ ﬁ;
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Example: Equations Method — By Superposition
—_—

» To determine the total deflection of the
beam for the given loading condition,
begin by breaking up the loading diagram
into parts, one part for each load case.

« Compute the total deflection by
superposing the deflections from each
of the individual loading conditions. In
this example, use the equation for a mid-
span point load and the equation for a
uniform distributed load.

University of Michigan, TCAUP

20k

| w = 1k/FT.

ek d L L Ll

Y —

A

4

w = 1000#/FT. + 55#/FT. = 1.06k/FT.

[TILI1

Ll 1]

pr3

5wl

A, - +
actual = 48F] * 384E]
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Example: Equations Method

* For a W18x55 with an
* E modulus of 30000 ES’I_
* moment of inertia of_8’99 in4

+ Using an allowable deflection limit of

20k/
w = Tk/FT.

L / 240. =
w = 1000#/FT. + 55#/FT. = 1.06k/FT.
* Check deflection 1117 11 TTT1
/ / 28’
A =£+M— +
2l T 48ET T 384EI 2
ZAN Ft’ o
_20Kk(28)1,728  5(1.06 k/ft.)(28)*1, 728 =
actual = 3 3 ; ;
45(30x107)8%0)  (388)3010°)890) =t
Aml = 0—.§ ” + 0§II = ].14”
L  28'x12in./ft. _
A , = - == =1.4" Limd
allow =240 240 L4
A1 = 1.14” < 1.4” . OK /
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Example: Asymmetrical Loading — Superposition of Equations

Standard equations provide values
of shear, moment and deflection at
points along a beam.

Cases can be superposed or
overlaid to obtain combined values
at some point on the beam.

To find the point of combined
maximum deflection, the derivative
of the combined deflection equation
can be solved for 0. This gives the
point with slope = 0 which is a
max/min on the deflection curve.

Steel Construction Manual
AISC 1989
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5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

Ri=Vimax. . . . . . . . . = % (21—a)
leaH ) Re=Vi : o % ¢ 5 5 @ & & a ="’2—a;
Ry T Rz v, (when x < a) ..... = Ry —uwx
e § M max.(at x = —Ru—/‘~ ...... Rz::
3’1_ wx2
¥ S — J,VM,( (whenx<a) ..... =R;x—T
Ry Sh e
e“'a\ 1 Mx (whenx>a) ..... = Ra2 (I—x)
L] ( 2(2/-a)2-2ax2(2 3
M, s l (whanx <a) ...z gep(areraeaeeiaie)
[~ a when x > a R = WAU—X) (401 oxa_az)
Moment x ( ) ° 24E1]
8. SIMPLE BEAM—CONCENTRATED LOAD AT ANY POINT
Total Equiv. UniformLoad . . . . . = 8 ';."’
P
‘.nh Ry = Vx(max. when a < b) ..... %
R, Re R.= v.(max. when a > b) ..... e
M max.( at point of load ) I PL’b
X
Vi Pbx
¥ M when x < a e e . m——
e ( ) 1
Shear _Ja@+2p) _ Pab (a+2b) V3a(a+2b)
Amax. (atx T—when a> b) e~ 7 e
Mmax, Aa, ( at point of load ) e e . = %
Moment Ax ( when x_<_3 ) PN = SPEI:XI (12— b2 —x2)
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Example (same equations as above): Asymmetrical Loading — Superposition

4‘"/&){
! K
ws | KLE a2 e
ERE S o 2w A
A | 12! / q,l 1 &

o
n“l I ? Te2

i ; USING PeresiTior CAsL 5 +cdot &
Deflection equations for cases 5 + 8 0 % 4

Asx = CAS€ 5+ CAsL ®

[4 22 AR L) T8
& = wd U-x)Axf-125-5)  Px (f5-1" - >
= deze . Foee |

e

Input actual dimensions

KLE

s 2,/ 2 L 3 prd ‘
Reduce and write deflection equation [ 102 Xz (4xs-22™12%) | 208) (718" il
in terms of x 240) t(36)

Y

= (- —Z—XM‘I?Z—Z%—/M};, %‘ (Aeemf) -

. z 3
Differentiate dy/dx to get the slope = &0 - gty 05ox - 244

equation e astote THIS 15 THL Eaokion |
\ 1%() = X _272x + |0fp For sLoTE FoR 124K
= 2 = WHEAL SLoPR = O, A =mly
%
Set slope equation =0 >0 2 X - Jixit-l0%0
cdils o) b i
= 1444910 £
Solve for x MRl s xRS /
2 Loy to Aot
M

This will be the point of Amax
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Example (same as above): Asymmetrical Loading — Superposition

Deflection equations (5+8) — wa (L) (424 _2,1_3154_ Plx (£342-27)

24 ET £ LELS

Input beam distances as before and

reduce terms » D (g Y= x°_36x*, 1050x - &0H

Ales ) - 1o’ - 36 (s 1050 (.s) - 804
Solve deflection for x=16.5' e1L.5 e
T TABG < TBeT ¢ 133TT < 5t

= ?408 K-Fr?
. erd .3
Solve for specific section and material FoR v 1Zx26 Ali+ P8 (1Nay ||,
by dividing by El of the section £ =204 % 29400 221
E-= 27&00 KSt = 7_-[‘0"

——
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Estimate: Asymmetrical Loading — Superposition of Equations

Or as an estimate...

It is also possible to estimate the
deflection location and value
without the more exact calculation
of x.

If an equation for A max is given,
use that (conservative).

Otherwise guess x near mid-span.

for example in this case
using C.L. =18 ft_

A =7344 k-ft3 = 2.15"
0.46 % off

Steel Construction Manual
AISC 1989
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L

W= [ KLF

| A

L L
19}

184

e

AR

5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

Ry=Vyimax. . . . . . . . . = -'%7 @l—a)
2
Re=Va . . « « « o . . . . -2
[T T =
Ry 4 Rz v, (whan x< a) ..... = Ry —wx
L% o Ru?
] M max.(at x - ) ..... 2w
\.{' """"" J,v My (whmx(a) ..... - R.x——wzﬁ
Ry Shear
“w ¢ Myx (whcn x> a) ..... = Rz (I—x)
" ax (whon x < a) e = (sr@a2aac a)+u=)
max
2(] —
| Ax (whon x> a) ..... - ".2‘(éllx) (4x] —2x2 — a2)

Moment

8. SIMPLE BEAM—CONCENTRATED LOAD

AT ANY POINT

Total Equiv. UniformLoad . . . . . L] "’:"
P
'-"1 Ry = Vx(max. when a < b) & @ 1 %
Ry Ry Ra= Vx(mu. when a > b) v e e i %
M mn.( at point of load ) e e . m $
x
M Pbx
X M whenx<a ) . . . . = ———
EERRNRANN ( ) 7
Shear amik:. [atxe ‘/ a(a+2b) whenasb) = Pab (a +2b) V3a (a +2b)
- 3 27EIL
M| [ I sa  (atpointofioad ) . . . . = Fabt
l Moment Ax ( when x < a ) e 6 % 8 wm :ET‘I (12— b2 —x2)
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