ARCHITECTURE 314 STRUCTURES I

Statics and Force Vectors

- Components
- Resultants & Equilibrants
- Graphic method
- Analytic method

Simon Steven from Weeghconst (1586)

Single vector

University of Michigan, TCAUP

- Magnitude
- Direction
- Point of Application

Force Transmissibility

- A force can be resolved at any point along its line of action
- The external affect on a body is unchanged

Force Systems

- Concurrent Coplanar
- Non-concurrent Coplanar
- Concurrent Non-coplanar
- Non-concurrent Non-coplanar

Structures I

Slide 1 of 12

Resultant

Addition of two or more forces

• Force parallelogram

Equilibrant

resultant

University of Michigan, TCAUP

Force polygon

Lecture Quiz 2 - Find the Balancing Forces

Use the graphic approach to determine the force components in the rope with a suspended load of 20 pounds. The slope of the rope is 1:10.

What is the total force in the rope?

Force Components

Orthogonal

- Horizontal
- Vertical

Force Decomposition

University of Michigan, TCAUP

Force Components

Orthogonal

- Horizontal
- Vertical

Decomposition of a Normal Force

Structures I

Graphic Method

Addition of Multiple Forces

Force Polygon

Forces add "Head to Tail"

The resultant closes the figure "Tail to Head"

University of Michigan, TCAUP

Structures I

Slide 9 of 12

Analytic Method

Addition of Multiple Forces

Break each force into orthogonal components

Sum all vertical and sum all horizontal

Find the resultant of the orthogonal resultants

Trig Formulas

Simon Stevin

Originator of Vector Analysis

The vector analysis of a "perpetual motion machine", from *Weeghconst* (1586)

1. Take G1 and G2 to be the gravitational force on the balls (weight).

2. Break these two unequal forces into orthogonal components, normal to and along the side (N and S)

3. Because G is normal to the base, the orthogonal component triangles will be similar.

4. S_1 and S_2 can be seen to be equal and proportional to the height of the original triangle. If G forces are scaled 1:1 with lengths L, then $S_1=S_2=h$, therefore the forces down each slope are balanced.

 $S_1 = S_2 = h$